化工进展 ›› 2024, Vol. 43 ›› Issue (2): 1069-1081.DOI: 10.16085/j.issn.1000-6613.2023-0310
• 资源与环境化工 • 上一篇
彭程1,2,3(), 徐漪琳1(), 石钰婧1, 张玟1, 李宇涛1, 王皓冉2, 张卫2, 占绣萍4()
收稿日期:
2023-03-02
修回日期:
2023-05-06
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
占绣萍
作者简介:
彭程(1988—),女,副教授,硕士生导师,研究方向为土壤污染控制与修复、新污染物风险评估。E-mail:cpeng@ecust.edu.cn基金资助:
PENG Cheng1,2,3(), XU Yilin1(), SHI Yujing1, ZHANG Wen1, LI Yutao1, WANG Haoran2, ZHANG Wei2, ZHAN Xiuping4()
Received:
2023-03-02
Revised:
2023-05-06
Online:
2024-02-25
Published:
2024-03-07
Contact:
ZHAN Xiuping
摘要:
除草剂已被大量使用于现代农业生产,而长期使用除草剂可能造成其在土壤中大量残留,或通过降水、淋溶和径流污染水体,因此引发环境污染问题和食品安全问题。生物炭作为一种绿色、高效的吸附剂已被广泛用于修复有机物污染水体和土壤。本文介绍了酸碱、有机物和金属盐浸渍改性,纳米零价铁和微生物负载改性等生物炭改性方法;综述了改性生物炭在除草剂污染修复中的应用情况,对比分析了生物炭改性前后的修复效果;探讨了改性生物炭自身特性、环境条件对改性生物炭修复除草剂污染的影响及机制。未来仍需对改性生物炭在除草剂污染修复过程中的稳定性、长效性和安全性等方面开展研究。
中图分类号:
彭程, 徐漪琳, 石钰婧, 张玟, 李宇涛, 王皓冉, 张卫, 占绣萍. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081.
PENG Cheng, XU Yilin, SHI Yujing, ZHANG Wen, LI Yutao, WANG Haoran, ZHANG Wei, ZHAN Xiuping. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081.
除草剂类型 | 除草剂浓度/mg·L-1 | 生物炭原料 | 热解温度/℃ | 改性方式 | 修复效果 | 参考文献 |
---|---|---|---|---|---|---|
2,4-D | 100 | 云杉 | 600 | — | 去除率约20% | [ |
1000 | 柳枝稷 | 425 | — | 吸附量达到133mg/g | [ | |
100 | 废茶叶 | 700 | 蒸汽改性 | 去除率达到21.5%,吸附量达到58.8mg/g | [ | |
1 | 稻草 | 700 | NaOH改性 | 去除率达到39% | [ | |
5~50 | 玉米秸秆 | 600 | — | 单位面积吸附量达到0.016mg/m2 | [ | |
K2CO3改性 | 单位面积吸附量达到0.029mg/m2 | |||||
K2CO3改性,表面胺化 | 单位面积吸附量达到0.033mg/m2 | |||||
K2CO3改性,表面氧化 | 单位面积吸附量达到0.044mg/m2 | |||||
20 | 稻壳 | 700 | — | 吸附量达3.63mg/m2 | [ | |
磷酸改性 | 吸附量达84.8mg/m2 | |||||
阿特拉津 | 2~10 | 竹竿 | 450 | — | 去除率达到51%,吸附量达到2.68mg/g | [ |
30 | 玉米秸秆 | 400 | 磷酸改性 | 吸附量达到26.9mg/g | [ | |
50 | 玉米秸秆 | 600 | 负载还原后的氧化石墨烯 | 吸附量达到58mg/g | [ | |
35 | 小麦秸秆 | 750 | — | 吸附量达到46.8mg/g | [ | |
掺杂N | 吸附量达到82.8mg/g | [ | ||||
50 | 核桃壳 | 600 | 盐酸改性 | 去除率达到约65%,吸附量达到29.76mg/g | [ | |
0.25~30 | 花生壳 | 450 | 磷酸改性 | 水体系中,吸附亲和力(Kf)增加128倍;土壤体系中,Kf增加13.5倍 | [ | |
MCPA | 2000 | 柳枝稷 | 425 | — | 单位面积吸附量达到45.45mg/m2 | [ |
100 | 云杉 | 600 | — | 去除率约30% | [ | |
— | 80%硬木, 20%挪威云杉 | 380~430 | CaCl2改性 | 吸附率约90% | [ | |
五氯苯酚 | — | 水稻秸秆 | 105 | 盐酸和盐酸-氢氟酸改性 | 去除量达到31.55mg/g | [ |
— | 竹竿 | 600 | 盐酸和盐酸-氢氟酸改性 | 土壤体系中的累积浸出量减少了42% | [ |
表1 生物炭及改性生物炭在除草剂污染修复中的应用
除草剂类型 | 除草剂浓度/mg·L-1 | 生物炭原料 | 热解温度/℃ | 改性方式 | 修复效果 | 参考文献 |
---|---|---|---|---|---|---|
2,4-D | 100 | 云杉 | 600 | — | 去除率约20% | [ |
1000 | 柳枝稷 | 425 | — | 吸附量达到133mg/g | [ | |
100 | 废茶叶 | 700 | 蒸汽改性 | 去除率达到21.5%,吸附量达到58.8mg/g | [ | |
1 | 稻草 | 700 | NaOH改性 | 去除率达到39% | [ | |
5~50 | 玉米秸秆 | 600 | — | 单位面积吸附量达到0.016mg/m2 | [ | |
K2CO3改性 | 单位面积吸附量达到0.029mg/m2 | |||||
K2CO3改性,表面胺化 | 单位面积吸附量达到0.033mg/m2 | |||||
K2CO3改性,表面氧化 | 单位面积吸附量达到0.044mg/m2 | |||||
20 | 稻壳 | 700 | — | 吸附量达3.63mg/m2 | [ | |
磷酸改性 | 吸附量达84.8mg/m2 | |||||
阿特拉津 | 2~10 | 竹竿 | 450 | — | 去除率达到51%,吸附量达到2.68mg/g | [ |
30 | 玉米秸秆 | 400 | 磷酸改性 | 吸附量达到26.9mg/g | [ | |
50 | 玉米秸秆 | 600 | 负载还原后的氧化石墨烯 | 吸附量达到58mg/g | [ | |
35 | 小麦秸秆 | 750 | — | 吸附量达到46.8mg/g | [ | |
掺杂N | 吸附量达到82.8mg/g | [ | ||||
50 | 核桃壳 | 600 | 盐酸改性 | 去除率达到约65%,吸附量达到29.76mg/g | [ | |
0.25~30 | 花生壳 | 450 | 磷酸改性 | 水体系中,吸附亲和力(Kf)增加128倍;土壤体系中,Kf增加13.5倍 | [ | |
MCPA | 2000 | 柳枝稷 | 425 | — | 单位面积吸附量达到45.45mg/m2 | [ |
100 | 云杉 | 600 | — | 去除率约30% | [ | |
— | 80%硬木, 20%挪威云杉 | 380~430 | CaCl2改性 | 吸附率约90% | [ | |
五氯苯酚 | — | 水稻秸秆 | 105 | 盐酸和盐酸-氢氟酸改性 | 去除量达到31.55mg/g | [ |
— | 竹竿 | 600 | 盐酸和盐酸-氢氟酸改性 | 土壤体系中的累积浸出量减少了42% | [ |
7 | TAN Guangcai, SUN Weiling, XU Yaru, et al. Sorption of mercury (Ⅱ) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution[J]. Bioresource Technology, 2016, 211: 727-735. |
8 | KHORRAM Mahdi Safaei, LIN Dunli, ZHANG Qian, et al. Effects of aging process on adsorption-desorption and bioavailability of fomesafen in an agricultural soil amended with rice hull biochar[J]. Journal of Environmental Sciences, 2017, 56: 180-191. |
9 | 赵璐璐. 改性生物炭对水中阿特拉津的吸附行为及应用研究[D]. 哈尔滨: 东北农业大学, 2017 . |
ZHAO Lulu. Adsorption behavior and applied research of atrazine on modified biochars[D]. Harbin: Northeast Agricultural University, 2017. | |
10 | 王亮, 田伟君, 乔凯丽, 等. 改性大豆秸秆生物炭对咪唑乙烟酸的吸附[J]. 中国环境科学, 2020, 40(10): 4488-4495. |
WANG Liang, TIAN Weijun, QIAO Kaili, et al. Sorption characteristics and mechanism of imazethapyr by modified soybean straw biochar[J]. China Environmental Science, 2020, 40(10): 4488-4495. | |
11 | HU Yong, XIAO Rong, KUANG Bo, et al. Application of modified biochar in the treatment of pesticide wastewater by constructed wetland[J]. Water, 2022, 14(23): 3889. |
12 | WANG Pingping, CAO Junli, MAO Liangang, et al. Effect of H3PO4-modified biochar on the fate of atrazine and remediation of bacterial community in atrazine-contaminated soil[J]. Science of the Total Environment, 2022, 851: 158278. |
13 | LEE Yonggu, SHIN Jaegwan, KWAK Jinwoo, et al. Effects of NaOH activation on adsorptive removal of herbicides by biochars prepared from ground coffee residues[J]. Energies, 2021, 14(5): 1297. |
14 | ZHU Xinwei, WANG Binyuan, KANG Jing, et al. Interfacial mechanism of the synergy of biochar adsorption and catalytic ozone micro-nano-bubbles for the removal of 2,4-dichlorophenoxyacetic acid in water[J]. Separation and Purification Technology, 2022, 299: 121777. |
15 | YAVARI S, ABUALQUMBOZ M, SAPARI N, et al. Sorption of imazapic and imazapyr herbicides on chitosan-modified biochars[J]. International Journal of Environmental Science and Technology, 2020, 17(7): 3341-3350. |
16 | ZHANG Xiaojuan, CAO Yejie, ZHANG Min, et al. Enhancement of the mechanical properties of anion exchange membranes with bulky imidazolium by “thiol-ene” crosslinking[J]. Journal of Membrane Science, 2020, 596: 117700. |
1 | ZHANG Zepu. Development of chemical weed control and integrated weed management in China[J]. Weed Biology and Management, 2003, 3(4): 197-203. |
2 | KHALID Sana, SHAHID Muhammad, MURTAZA Behzad, et al. A critical review of different factors governing the fate of pesticides in soil under biochar application[J]. Science of the Total Environment, 2020, 711: 134645. |
3 | 仲维科, 郝戬, 孙梅心, 等. 我国食品的农药污染问题[J]. 农药, 2000, 39(7): 1-4. |
ZHONG Weike, HAO Jian, SUN Meixin, et al. Pesticides residues in food in China[J]. Pesticides, 2000, 39(7): 1-4. | |
4 | KWON Gihoon, BHATNAGAR Amit, WANG Hailong, et al. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar[J]. Journal of Hazardous Materials, 2020, 400: 123242. |
5 | WANG Jianlong, WANG Shizong. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022. |
6 | YU Haowei, ZOU Weixin, CHEN Jianjun, et al. Biochar amendment improves crop production in problem soils: A review[J]. Journal of Environmental Management, 2019, 232: 8-21. |
17 | 王婷婷. 改性生物炭的制备及其在大米农药残留分析中的应用[D]. 天津: 天津商业大学, 2020. |
WANG Tingting. Preparation of modified biochar and its application in the analysis of pesticide residues in rice[D]. Tianjin: Tianjin University of Commerce, 2020. | |
18 | 王申宛, 郑晓燕, 校导, 等. 生物炭的制备、改性及其在环境修复中应用的研究进展[J]. 化工进展, 2020, 39(S2): 352-361. |
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361. | |
19 | 胡松伯. 铁改性生物炭负载节杆菌DNS32强化降解阿特拉津[D]. 哈尔滨: 东北农业大学, 2019. |
HU Songbo. Iron-modified biochar loaded Acinetobacter lwoffii DNS32 for enhanced degradation of atrazine[D]. Harbin: Northeast Agricultural University, 2019. | |
20 | WAN Chunli, LI Huiqi, ZHAO Lianfa, et al. Mechanism of removal and degradation characteristics of dicamba by biochar prepared from Fe-modified sludge[J]. Journal of Environmental Management, 2021, 299: 113602. |
21 | 刘艳艳, 王洁, 田质涛, 等. 高效可回收吸附剂磁性生物炭研究进展[J]. 武汉理工大学学报(信息与管理工程版), 2022, 44(3): 389-394. |
LIU Yanyan, WANG Jie, TIAN Zhitao, et al. Research progress of efficient recyclable adsorbent magnetic biochar[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2022, 44(3): 389-394. | |
22 | LI Lingyun, HU Jiwei, SHI Xuedan, et al. Nanoscale zero-valent metals: A review of synthesis, characterization, and applications to environmental remediation[J].Environmental Science and Pollution Research International, 2016, 23(18): 17880-17900. |
23 | WANG Shengsen, ZHAO Mingyue, ZHOU Min, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. |
24 | RODRIGUEZ-NARVAEZ Oscar M, PERALTA-HERNANDEZ Juan Manuel, GOONETILLEKE Ashantha, et al. Biochar-supported nanomaterials for environmental applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 21-33. |
25 | JIANG Qun, JIANG Simeng, LI Hui, et al. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine[J]. Chemical Engineering Journal, 2022, 431: 133937. |
26 | ZHANG Ying, JIANG Qun, JIANG Simeng, et al. One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine[J]. Chemical Engineering Journal, 2021, 420: 129868. |
27 | LI Ronghua, WANG Jim J, GASTON Lewis A, et al. An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution[J]. Carbon, 2018, 129: 674-687. |
28 | JIANG Xianying, OUYANG Zhuozhi, ZHANG Zhengfang, et al. Mechanism of glyphosate removal by biochar supported nano-zero-valent iron in aqueous solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 64-72. |
29 | WU Ping, WANG Zeyu, BHATNAGAR Amit, et al. Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications[J]. Journal of Hazardous Materials, 2021, 416: 125915. |
30 | YOUNGWILAI Atcharaporn, KIDKHUNTHOD Pinit, JEARANAIKOON Nichada, et al. Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar[J]. Science of the Total Environment, 2020, 713: 136708. |
31 | WAHLA Abdul Qadeer, ANWAR Samina, MUELLER Jochen A, et al. Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure[J]. Journal of Hazardous Materials, 2020, 390: 121493. |
32 | ZHAO Ling, XIAO Donglin, LIU Yang, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater[J]. Water Research, 2020, 172: 115494. |
33 | GIESE Ellen C, SILVA Debora D V, COSTA Ana F M, et al. Immobilized microbial nanoparticles for biosorption[J]. Critical Reviews in Biotechnology, 2020, 40(5): 653-666. |
34 | YU Tianmiao, WANG Li, MA Fang, et al. A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms[J]. Journal of Hazardous Materials, 2020, 384: 121326. |
35 | 陈楸健. 微生物与生物炭协同修复草甘膦的效果与修复机理研究[D]. 苏州: 苏州科技大学, 2019. |
CHEN Qiujian. Study on the effects and mechanism of glyphosate remediation by mircoorganism and biochar[D]. Suzhou: Suzhou University of Science and Technology, 2019. | |
36 | RUUSKANEN Suvi, FUCHS Benjamin, NISSINEN Riitta, et al. Ecosystem consequences of herbicides: The role of microbiome[J]. Trends in Ecology & Evolution, 2023, 38(1): 35-43. |
37 | ZHU Ling, ZHAO Nan, TONG Lihong, et al. Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid[J]. Chemosphere, 2018, 210: 734-744. |
38 | YANG Fan, SUN Lili, XIE Weiling, et al. Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: An efficient adsorbent for atrazine removal[J]. Science of the Total Environment, 2017, 607/608: 1391-1399. |
39 | XU Tao, LOU Liping, LUO Ling, et al. Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil[J]. Science of the Total Environment, 2012, 414: 727-731. |
40 | CEDERLUND Harald, Elisabet BÖRJESSON, John STENSTRÖM. Effects of a wood-based biochar on the leaching of pesticides chlorpyrifos, diuron, glyphosate and MCPA[J]. Journal of Environmental Management, 2017, 191: 28-34. |
41 | MCGINLEY J, HEALY M G, RYAN P C, et al. Batch adsorption of herbicides from aqueous solution onto diverse reusable materials and granulated activated carbon[J]. Journal of Environmental Management, 2022, 323: 116102. |
42 | ESSANDOH Matthew, WOLGEMUTH Daniel, PITTMAN Charles U, et al. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar[J]. Chemosphere, 2017, 174: 49-57. |
43 | MANDAL Sanchita, SARKAR Binoy, IGALAVITHANA Avanthi Deshani, et al. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties[J]. Bioresource Technology, 2017, 246: 160-167. |
44 | LIANG Xuetao, GUO Niandong, ZHAO Yujie, et al. Rapid effectual entrapment of pesticide pollutant by phosphorus-doped biochar: Effects and response sequence of functional groups[J]. Journal of Molecular Liquids, 2022, 365: 120155. |
45 | SBIZZARO Mariana, CÉSAR SAMPAIO Silvio, RINALDO DOS REIS Ralpho, et al. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems[J]. Journal of Molecular Liquids, 2021, 343: 117667. |
46 | NASCIMENTO Cleuciane Tillvitz DO, VIEIRA Melissa Gurgel Adeodato, SCHEUFELE Fabiano Bisinella, et al. Adsorption of atrazine from aqueous systems on chemically activated biochar produced from corn straw[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107039. |
47 | ZHANG Ying, CAO Bo, ZHAO Lulu, et al. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions[J]. Applied Surface Science, 2018, 427: 147-155. |
48 | 鲍晨宁, 柴涛, 刘清浩, 等. 核桃壳基生物炭对水中阿特拉津的吸附研究[J]. 中北大学学报(自然科学版), 2022, 43(2): 158-164, 179. |
BAO Chenning, CHAI Tao, LIU Qinghao, et al. Study on adsorption of atrazine in water by walnut shell-based biochar[J]. Journal of North University of China (Natural Science Edition), 2022, 43(2): 158-164, 179. | |
49 | LOU Liping, WU Binbin, WANG Lina, et al. Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar[J]. Bioresource Technology, 2011, 102(5): 4036-4041. |
50 | INYANG Mandu I, GAO Bin, YAO Ying, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406-433. |
51 | AHMAD Mushtaque, TEEL Amy L, WATTS Richard J. Persulfate activation by subsurface minerals[J]. Journal of Contaminant Hydrology, 2010, 115(1/2/3/4): 34-45. |
52 | LU Yue, HU Yingju, TANG Lin, et al. Effects and mechanisms of modified biochars on microbial iron reduction of Geobacter sulfurreducens [J]. Chemosphere, 2021, 283: 130983. |
53 | LIANG Xuetao, ZHAO Yujie, GUO Niandong, et al. Heterogeneous activation of peroxymonosulfate by Co3O4 loaded biochar for efficient degradation of 2,4-dichlorophenoxyacetic acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127152. |
54 | WANG Xiang, DENG Rufeng, SHEN Wenbo, et al. Rapid degradation of nitrochlorobenzene by activated persulfate oxidation with biochar supported nanoscaled zero valent iron[J]. Frontiers in Chemistry, 2021, 9: 615694. |
55 | SONG Zilong, ZHANG Yuting, LIU Chao, et al. Insight into OH and O2 - formation in heterogeneous catalytic ozonation by delocalized electrons and surface oxygen-containing functional groups in layered-structure nanocarbons[J]. Chemical Engineering Journal, 2019, 357: 655-666. |
56 | LIU Lu, LI Yi, YOZA Brandon A, et al. A char-clay composite catalyst derived from spent bleaching earth for efficient ozonation of recalcitrants in water[J]. Science of the Total Environment, 2020, 699: 134395. |
57 | LUO Kun, PANG Ya, YANG Qi, et al. Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid[J]. Chemosphere, 2019, 231: 495-501. |
58 | 杨晨, 孙雪梅, 张佳妮, 等. 磁性生物炭活化过氧化氢降解环丙沙星研究[J]. 环境科学与技术, 2022, 45(1): 15-22. |
YANG Chen, SUN Xuemei, ZHANG Jiani, et al. The degradation of ciprofloxacin by magnetic biochar activates hydrogen peroxide[J]. Environmental Science & Technology, 2022, 45(1): 15-22. | |
59 | LIU Na, CHARRUA Alberto Bento, WENG Chih-Huang, et al. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study[J]. Bioresource Technology, 2015, 198: 55-62. |
60 | ZHANG Peng, SUN Hongwen, YU Li, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244/245: 217-224. |
61 | 卫婷, 黄枫城, 李慧君, 等. 不同原材料生物炭对农田土壤阿特拉津去除性能及微生物群落结构的影响[J]. 南方农业学报, 2022, 53(9): 2457-2467. |
WEI Ting, HUANG Fengcheng, LI Huijun, et al. Effects of biochar from different raw materials on atrazine removal and microbial community structure in farmland soil[J]. Journal of Southern Agriculture, 2022, 53(9): 2457-2467. | |
62 | 张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1): 1-18. |
ZHANG Weiming, XIU Liqun, WU Di, et al. Review of biochar structure and physicochemical properties [J]. Acta Agronomica Sinica, 2021, 47(1): 1-18. | |
63 | XU Nan, TAN Guangcai, WANG Hongyuan, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016, 74: 1-8. |
64 | 武爱莲, 王劲松, 董二伟, 等. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响[J]. 土壤学报, 2019, 56(1): 176-185. |
WU Ailian, WANG Jinsong, DONG Erwei, et al. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil[J]. Acta Pedologica Sinica, 2019, 56(1): 176-185. | |
65 | ABBAS Zohaib, Shafaqat ALI, RIZWAN Muhammad, et al. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar[J]. Arabian Journal of Geosciences, 2018, 11(16): 448. |
66 | 吴阳, 刘振中, 江文, 等. 生物炭对几类常见新兴污染物去除的研究进展[J]. 化工进展, 2021, 40(5): 2839-2851. |
WU Yang, LIU Zhenzhong, JIANG Wen, et al. Research progress on removal of several common emerging pollutants by biochar[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2839-2851. | |
67 | XU Zhihua, WANG Yongheng, WU Mingzhen, et al. Preparation of biochar derived from waste cotton woven by low-dosage Fe(NO3)3 activation: Characterization, pore development, and adsorption[J]. Environmental Science and Pollution Research International, 2023, 30(17): 49523-49535. |
68 | BINH Quach An, NGUYEN Hong-Hai. Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar[J]. Bioresource Technology Reports, 2020, 11: 100520. |
69 | XIA Meiling, SHAO Xiaohou, SUN Zhenhua, et al. Conversion of cotton textile wastes into porous carbons by chemical activation with ZnCl2, H3PO4, and FeCl3 [J]. Environmental Science and Pollution Research International, 2020, 27(20): 25186-25196. |
70 | 程文远, 李法云, 吕建华, 等. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
CHENG Wenyuan, LI Fayun, Jianhua LYU, et al. Sorption characteristics of polycyclic aromatic hydrocarbons phenanthrene on sunflower straw biochar modified with alkali[J]. Ecology and Environmental Sciences, 2022, 31(4): 824-834. | |
71 | 汪洁, 郭亚平, 郭广勇, 等. 酸改性稻壳生物炭去除水中Cr(Ⅵ)的特性与机理[J]. 离子交换与吸附, 2020, 36(3): 242-252. |
WANG Jie, GUO Yaping, GUO Guangyong, et al. Removal of Cr(Ⅵ) from aqueous solution by acid modified rice husk biochar: Characteristics and machanisms[J]. Ion Exchange and Adsorption, 2020, 36(3): 242-252. | |
72 | 江汝清, 余广炜, 王玉, 等. 酸改性猪粪生物炭的制备及其对直接红23染料的吸附性能[J]. 化工进展, 2022, 41(12): 6489-6499. |
JIANG Ruqing, YU Guangwei, WANG Yu, et al. Preparation of acid-modified pig manure biochar and its adsorption performance on Direct Red 23[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6489-6499. | |
73 | 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. |
LIU Zongtang, SHAO Jiang, LI Yan, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars[J]. China Environmental Science, 2022, 42(8): 3736-3743. | |
74 | 所凤阅. 玉米秸秆生物炭的研制及其对水体中农药的吸附机制研究[D]. 沈阳: 沈阳农业大学, 2018. |
SUO Fengyue. Study of synthesis of biochar from corn and its adsorption mechanisms of pesticides from water[D]. Shenyang: Shenyang Agricultural University, 2018. | |
75 | Daniel ELCEY C, A A Mohammad KUNHI. Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation[J]. Journal of Agricultural and Food Chemistry, 2010, 58(2): 1046-1054. |
76 | PONDER Sherman M, DARAB John G, MALLOUK Thomas E. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science and Technology, 2000, 34(12): 2564-2569. |
77 | BORGGAARD Ole K, GIMSING Anne Louise. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review[J]. Pest Management Science, 2008, 64(4): 441-456. |
78 | HUANG Xing, HE Jian, YAN Xin, et al. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes[J]. Pesticide Biochemistry and Physiology, 2017, 143: 272-297. |
79 | YU Linpeng, YUAN Yong, TANG Jia, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens [J]. Scientific Reports, 2015, 5: 16221. |
80 | CHEN Gao, FISCH Alexander R, GIBSON Caleb M, et al. Mineralization versus fermentation: Evidence for two distinct anaerobic bacterial degradation pathways for dichloromethane[J]. The ISME Journal, 2020, 14(4): 959-970. |
81 | AHMAD Sajjad, AHMAD Hafiz Waqas, BHATT Pankaj. Microbial adaptation and impact into the pesticide's degradation[J].Archives of Microbiology, 2022, 204(5): 288. |
82 | MA Jie, YU Fei, ZHOU Lu, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2012, 4(11): 5749-5760. |
83 | ZHOU Jiangmin, CHEN Hualin, THRING Ronald Wallen, et al. Chemical pretreatment of rice straw biochar: Effect on biochar properties and hexavalent chromium adsorption[J]. International Journal of Environmental Research, 2019, 13(1): 91-105. |
84 | LIU Kailin, HE Ying, XU Shiji, et al. Mechanism of the effect of pH and biochar on the phytotoxicity of the weak acid herbicides imazethapyr and 2,4-D in soil to rice (Oryza sativa) and estimation by chemical methods[J]. Ecotoxicology and Environmental Safety, 2018, 161: 602-609. |
85 | 赵鹏程. 改性生物炭对阿特拉津的吸附性能研究[D]. 沈阳: 沈阳农业大学, 2022. |
ZHAO Pengcheng. The adsorption performance of Atrazine on modified biochars[D]. Shenyang: Shenyang Agricultural University, 2022. | |
86 | JIANG Tao, WANG Bing, GAO Bin, et al. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications[J]. Journal of Hazardous Materials, 2023, 442: 130075. |
87 | WANG Yu, WANG Lei, FANG Guodong, et al. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations[J]. Environmental Pollution, 2013, 172: 86-93. |
88 | DIAO Zenghui, ZHANG Wenxuan, LIANG Jingyi, et al. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: Synergistic effect and mechanism[J]. Chemical Engineering Journal, 2021, 409: 127684. |
89 | 刘璐. 改性生物炭对土壤中异丙甲草胺的固定化研究[D]. 哈尔滨: 东北农业大学, 2021. |
LIU Lu. Study on immobilization of metolachlor by modified biochar in soil[D]. Harbin: Northeast Agricultural University, 2021. | |
90 | ZHENG Wei, GUO Mingxin, CHOW Teresa, et al. Sorption properties of greenwaste biochar for two triazine pesticides[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 121-126. |
91 | DAI Shijin, ZHAO Youcai, NIU Dongjie, et al. Preparation and reactivation of magnetic biochar by molten salt method: Relevant performance for chlorine-containing pesticides abatement[J]. Journal of the Air & Waste Management Association, 2019, 69(1): 58-70. |
92 | HONG Qiaofeng, LIU Chao, WANG Zhenbei, et al. Electron transfer enhancing Fe(Ⅱ)/Fe(Ⅲ) cycle by sulfur and biochar in magnetic FeS@biochar to active peroxymonosulfate for 2,4-dichlorophenoxyacetic acid degradation[J]. Chemical Engineering Journal, 2021, 417: 129238. |
93 | CHENG Hongguang, WANG Jinyang, TU Chenglong, et al. Arbuscular mycorrhizal fungi and biochar influence simazine decomposition and leaching[J]. GCB Bioenergy, 2021, 13(4): 708-718. |
94 | JIANG Yanhong, LI Anyu, DENG Hua, et al. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks[J]. Bioresource Technology, 2019, 276: 183-189. |
95 | MARTIN Sheridan M, KOOKANA Rai S, VAN ZWIETEN Lukas, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil[J]. Journal of Hazardous Materials, 2012, 231/232: 70-78. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[3] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[4] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[7] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[8] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[9] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
[10] | 郭宇, 佟民心, 吴红梅. 氨基功能化双醛淀粉吸附剂的制备及其对Pb(Ⅱ)的吸附行为[J]. 化工进展, 2023, 42(12): 6589-6599. |
[11] | 陶雨萱, 郭亮, 高聪, 宋伟, 陈修来. 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52. |
[12] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[13] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[14] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[15] | 陈加波, 周鑫, 李旭. 以活性污泥为接种污泥厌氧氨氧化工艺的快速启动及脱氮效能[J]. 化工进展, 2022, 41(7): 3900-3907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |