1 |
汤睿, 张寒冰, 陆彩妹, 等. 有机磁性膨润土对环丙沙星和四环素的吸附性能[J]. 化工进展, 2021, 40(11): 6235-6245.
|
|
TANG Rui, ZHANG Hanbing, LU Caimei, et al. Adsorption of ciprofloxacin and tetracycline by organically modified magnetic bentonite[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6235-6245.
|
2 |
JIANG Liushan, XIE Yu, HE Fan, et al. Facile synthesis of GO as middle carrier modified flower-like BiOBr and C3N4 nanosheets for simultaneous treatment of chromium(Ⅵ) and tetracycline[J]. Chinese Chemical Letters, 2021, 32(7): 2187-2191.
|
3 |
ZHANG Yanan, ZHAO Yangguo, YANG Dexiang, et al. Insight into the removal of tetracycline-resistant bacteria and resistance genes from mariculture wastewater by ultraviolet/persulfate advanced oxidation process[J]. Journal of Hazardous Materials Advances, 2022, 7: 100129.
|
4 |
郭新兴, 刘建国, 王鹏, 等. 电化学沉积法制备ZIF-8及其对四环素的吸附[J]. 环境化学, 2020, 39(3): 581-592.
|
|
GUO Xinxing, LIU Jianguo, WANG Peng, et al. Electrochemical synthesis of ZIF-8 for adsorption of tetracycline[J]. Environmental Chemistry, 2020, 39(3): 581-592.
|
5 |
张畅滕, 申乾宏, 郑素华, 等. 三维阶层结构BiOBr/Bi2WO6多孔微球制备及其对盐酸四环素的可见光催化降解性能[J]. 材料科学与工程学报, 2022, 40(4): 567-574.
|
|
ZHANG Changteng, SHEN Qianhong, ZHENG Suhua, et al. Preparation of three-dimensional hierarchical BiOBr/Bi2WO6 porous microsphere and its visible-light photocatalytic degradation for tetracycline hydrochloride[J]. Journal of Materials Science and Engineering, 2022, 40(4): 567-574.
|
6 |
石宇, 杨晓婷, 兰贵红, 等. MnO x 掺杂纳米石墨阴极的制备及其对盐酸四环素的降解[J]. 精细化工, 2022, 39(4): 798-805.
|
|
SHI Yu, YANG Xiaoting, LAN Guihong, et al. Preparation of nano graphite cathode doped with MnO x and its degradation for tetracycline hydrochloride[J]. Fine Chemicals, 2022, 39(4): 798-805.
|
7 |
李佳泽, 吴宝利, 刘富荣, 等. BAF工艺深度处理四环素类制药废水研究[J]. 中国给水排水, 2022, 38(5): 24-31.
|
|
LI Jiaze, WU Baoli, LIU Furong, et al. Treatment of tetracyclines antibiotics pharmaceutical wastewater by BAF process[J]. China Water & Wastewater, 2022, 38(5): 24-31.
|
8 |
陈杰, 李明明, 刘治刚, 等. Fe3O4@TiO2核壳微球吸附-光催化联合去除四环素性能[J]. 化学研究与应用, 2022, 34(8): 1803-1812.
|
|
CHEN Jie, LI Mingming, LIU Zhigang, et al. Removal of tetracycline by Fe3O4@TiO2 core-shell microsphere combined with adsorption-photocatalysis[J]. Chemical Research and Application, 2022, 34(8): 1803-1812.
|
9 |
宋继梅, 朱婉蓉, 杨捷, 等. Ag/AgBr/BiOBr的制备及其快速光催化降解四环素[J]. 安徽大学学报(自然科学版), 2022, 46(5): 71-82.
|
|
SONG Jimei, ZHU Wanrong, YANG Jie, et al. Preparation of Ag/AgBr/BiOBr and their prominent photocatalytic activity for the degradation of tetracycline under visible light[J]. Journal of Anhui University (Natural Science Edition), 2022, 46(5): 71-82.
|
10 |
仇思, 李小明, 罗琨, 等. g-C3N4/Ag3PO4/CNT对亚甲基蓝和四环素光催化的降解[J]. 环境化学, 2022, 41(7): 2414-2424.
|
|
CHOU Si, LI Xiaoming, LUO Kun, et al. Study on the photocatalytic degradation performance of g-C3N4/Ag3PO4/CNT on methylene blue and tetracycline[J]. Environmental Chemistry, 2022, 41(7): 2414-2424.
|
11 |
邓郁蓉, 欧阳卓智, 杨琛, 等. 四环素在水体中的自然光解作用机制[J]. 环境科学学报, 2022, 42(9): 40-50.
|
|
DENG Yurong, OUYANG Zhuozhi, YANG Chen, et al. Photolysis of tetracycline in aqueous environment[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 40-50.
|
12 |
ZOUHEIR M, TANJI K, NAVIO J A, et al. Effective photocatalytic conversion of formic acid using iron, copper and sulphate doped TiO2 [J]. Journal of Central South University, 2022, 29(11): 3592-3607.
|
13 |
HU Xueli, LU Peng, FU Min, et al. Activating the photocatalytic activity of insulator Barium silicate: A liquid-phase alkalized tetracycline photosensitizer and its self-destruction[J]. Chemical Engineering Journal, 2023, 454: 140281.
|
14 |
刘怡璇, 林跃朝, 马伟芳. 可见光催化降解水中卤代有机污染物的研究进展[J]. 化工进展, 2022, 41(S1): 571-579.
|
|
LIU Yixuan, LIN Yuechao, MA Weifang. Research progress on degradation of halogenated organic contaminants in water by visible light photocatalysis[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 571-579.
|
15 |
乔波, 欧阳紫菱, 郭丽, 等. 曝气量对PCMR处理腐殖酸废水中膜污染控制研究[J]. 水处理技术, 2022, 48(5): 81-84.
|
|
QIAO Bo, OUYANG Ziling, GUO Li, et al. Study on the control of membrane fouling in humic acid wastewater treated by PCMR with aeration volume[J]. Technology of Water Treatment, 2022, 48(5): 81-84.
|
16 |
ZHU Ying, LIU Kun, MUHAMMAD Y, et al. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway[J]. Environmental Science and Pollution Research, 2020, 27(5): 5155-5167.
|
17 |
GOPAL G, NATARAJAN C, MUKHERJEE A. Synergistic removal of tetracycline and copper(Ⅱ) by in-situ B-Fe/Ni nanocomposite—A novel and an environmentally sustainable green nanomaterial[J]. Environmental Technology & Innovation, 2022, 25: 102187.
|
18 |
AI Yuejie, ZHAO Chaofeng, SUN Lu, et al. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation[J]. Science of the Total Environment, 2020, 702: 135072.
|
19 |
MUÑOZ-FLORES P, POON P S, ANIA C O, et al. Performance of a C-containing Cu-based photocatalyst for the degradation of tartrazine: Comparison of performance in a slurry and CPC photoreactor under artificial and natural solar light[J]. Journal of Colloid and Interface Science, 2022, 623: 646-659.
|
20 |
FILIPE O M S, SANTOS E B H, OTERO Marta, et al. Photodegradation of metoprolol in the presence of aquatic fulvic acids. Kinetic studies, degradation pathways and role of singlet oxygen, OH radicals and fulvic acids triplet states[J]. Journal of Hazardous Materials, 2020, 385: 121523.
|
21 |
HUANG Hua, NIU Zhirui, SHI Ruru, et al. Thermal oxidation activation of hydrochar for tetracycline adsorption: The role of oxygen concentration and temperature[J]. Bioresource Technology, 2020, 306: 123096.
|
22 |
YANG Bo, WANG Chengjin, CHENG Xin, et al. Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline[J]. Water Research, 2021, 202: 117379.
|
23 |
潘柳疏, 焦春霖, 熊建华, 等. 蔗渣纤维基碳球负载TiO2复合材料的制备表征及对四环素的去除研究[J]. 水处理技术, 2022, 48(5): 85-89.
|
|
PAN Liushu, JIAO Chunlin, XIONG Jianhua, et al. Preparation, characterization and tetracycline removal of bagasse cellulose carbon spheres supported nano-TiO2 composites[J]. Technology of Water Treatment, 2022, 48(5): 85-89.
|
24 |
CAI Ying, SHEN Shihao, FAN Jinhong. Enhanced degradation of tetracycline by Cu(Ⅱ) complexation in the FeS/sulfite system[J]. Journal of Hazardous Materials, 2022, 421: 126673.
|
25 |
饶涵, 马永梅, 李思悦. NaYF4: Yb, Tm@TiO2复合催化剂光催化降解盐酸四环素[J]. 功能材料, 2022, 53(3): 3011-3019.
|
|
RAO Han, MA Yongmei, LI Siyue. Photocatalytic degradation of tetracycline hydrochloride by NaYF4: Yb, Tm@TiO2 composite catalyst[J]. Journal of Functional Materials, 2022, 53(3): 3011-3019.
|
26 |
段毅, 邹烨, 周书葵, 等. 过渡金属单原子催化剂活化H2O2/PMS/PDS降解有机污染物的研究进展[J]. 化工进展, 2022, 41(8): 4147-4158.
|
|
DUAN Yi, ZOU Ye, ZHOU Shukui, et al. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158.
|
27 |
GONG Yinan, WANG Ying, TANG Miaomiao, et al. A two-step process coupling photocatalysis with adsorption to treat tetracycline-Copper(Ⅱ) hybrid wastewaters[J]. Journal of Water Process Engineering, 2022, 47: 102710.
|
28 |
黄翔峰, 熊永娇, 彭开铭, 等. 金属离子络合对抗生素去除特性的影响研究进展[J]. 环境化学, 2016, 35(1): 133-140.
|
|
HUANG Xiangfeng, XIONG Yongjiao, PENG Kaiming, et al. The progress of antibiotics removal performance under the complexion effect of metal ions[J]. Environmental Chemistry, 2016, 35(1): 133-140.
|
29 |
JIANG Chenxiao, CHEN Hanlin, ZHANG Yilue, et al. Complexation Electrodialysis as a general method to simultaneously treat wastewaters with metal and organic matter[J]. Chemical Engineering Journal, 2018, 348: 952-959.
|
30 |
FATIMA B, SIDDIQUI S I, RAJOR H K, et al. Photocatalytic removal of organic dye using green synthesized zinc oxide coupled cadmium tungstate nanocomposite under natural solar light irradiation[J]. Environmental Research, 2023, 216: 114534.
|
31 |
CIONTI C, PARGOLETTI E, FALLETTA E, et al. Combining pH-triggered adsorption and photocatalysis for the remediation of complex water matrices[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108468.
|
32 |
陈佳昆, 汤健, 夏恒, 等. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072.
|
|
CHEN Jiakun, TANG Jian, XIA Heng, et al. Numerical simulation of dioxin emission concentration in grate furnace incineration processes for municipal solid waste[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1061-1072.
|
33 |
VILLARREAL R C, LUQUE-MORALES M, CHINCHILLAS-CHINCHILLAS M J, et al. Langmuir-Hinshelwood-Hougen-Watson model for the study of photodegradation properties of zinc oxide semiconductor nanoparticles synthetized by Peumus boldus [J]. Results in Physics, 2022, 36: 105421.
|
34 |
蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 84-90.
|
|
JIANG Zhuwu, SHI Antong, SHEN Junhong. Study on efficiency and mechanism of visible-light photocatalytic degradation of ciprofloxacin by using Cu-ZnO/g-C3N4 composite[J]. Materials Reports, 2022, 36(20): 84-90.
|