1 |
黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708.
|
|
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708.
|
2 |
ANJUM M A R, JEONG H Y, LEE M H, et al. Efficient hydrogen evolution reaction catalysis in alkaline media by all-in-one MoS2 with multifunctional active sites[J]. Advanced Materials, 2018, 30(20): 1707105.
|
3 |
YU Huogen, XIAO Pian, WANG Ping, et al. Amorphous molybdenum sulfide as highly efficient electron-cocatalyst for enhanced photocatalytic H2 evolution[J]. Applied Catalysis B: Environmental, 2016, 193: 217-225.
|
4 |
LI Yuxuan, YIN Jie, AN Li, et al. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting[J]. Small, 2018, 14(26): 1801070.
|
5 |
YIN Jie, LI Yuxuan, Fan LYU, et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices[J]. Advanced Materials, 2017, 29(47): 1704681.
|
6 |
AN Li, ZHANG Zhiyong, FENG Jianrui, et al. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte[J]. Journal of the American Chemical Society, 2018, 140(50): 17624-17631.
|
7 |
SUEN Nian Tzu, HUNG Sung Fu, QUAN Quan, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
|
8 |
ZHU Jing, HU Liangsheng, ZHAO Pengxiang, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical Reviews, 2020, 120(2): 851-918.
|
9 |
CHHOWALLA M, SHIN Hyeon Suk, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.
|
10 |
GREELEY J, JARAMILLO T F, BONDE J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution[J]. Nature Materials, 2006, 5(11): 909-913.
|
11 |
ZHANG Hua. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
|
12 |
KIRIYA D, LOBACCARO P, NYEIN H Y Y, et al. General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction[J]. Nano Letters, 2016, 16(7): 4047-4053.
|
13 |
PETŐ J, OLLÁR T, VANCSÓ P, et al. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions[J]. Nature Chemistry, 2018, 10(12): 1246-1251.
|
14 |
SHI Yi, ZHOU Yue, YANG Dongrui, et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2017, 139(43): 15479-15485.
|
15 |
XIE Junfeng, ZHANG Hao, LI Shuang, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813.
|
16 |
XIE Junfeng, ZHANG Jiajia, LI Shuang, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881-17888.
|
17 |
DENG Jiao, LI Haobo, XIAO Jianping, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601.
|
18 |
LAURITSEN J V, NYBERG M, NØRSKOV J K, et al. Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy[J]. Journal of Catalysis, 2004, 224(1): 94-106.
|
19 |
BONDE J, MOSES P G, JARAMILLO T F, et al. Hydrogen evolution on nano-particulate transition metal sulfides[J]. Faraday Discussions, 2008, 140: 219-231; discussion 297-317.
|
20 |
LIU Peitao, ZHU Jingyi, ZHANG Jingyan, et al. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution[J]. ACS Energy Letters, 2017, 2(4): 745-752.
|
21 |
Kuilin LYU, SUO Weiqun, SHAO Mingda, et al. Nitrogen doped MoS2 and nitrogen doped carbon dots composite catalyst for electroreduction CO2 to CO with high Faradaic efficiency[J]. Nano Energy, 2019, 63: 103834.
|
22 |
ZENG Libin, CHEN Shuai, VAN DER ZALM Joshua, et al. Sulfur vacancy-rich N-doped MoS2 nanoflowers for highly boosting electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Chemical Communications, 2019, 55(51): 7386-7389.
|
23 |
LIU Qiuhong, WEIJUN Xia, WU Zhenjun, et al. The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries[J]. Nanotechnology, 2016, 27(17): 175402.
|
24 |
ZHENG Jian, ZHANG Han, DONG Shaohua, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communications, 2014, 5(1): 1-7.
|
25 |
WEI Cong, WU Wenzhuo, LI Hao, et al. Atomic plane-vacancy engineering of transition-metal dichalcogenides with enhanced hydrogen evolution capability[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25264-25270.
|
26 |
TANG Cheng, JIAO Yan, SHI Bingyang, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23): 9171-9176.
|
27 |
BENOIST L, GONBEAU D, PFISTER-GUILLOUZO G, et al. XPS analysis of oxido-reduction mechanisms during lithium intercalation in amorphous molybdenum oxysulfide thin films[J]. Solid State Ionics, 1995, 76(1/2): 81-89.
|
28 |
YANG Yang, FEI Huilong, RUAN Gedeng, et al. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices[J]. Advanced Materials, 2014, 26(48): 8163-8168.
|
29 |
LI Ruchun, YANG Linjing, XIONG Tanli, et al. Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction[J]. Journal of Power Sources, 2017, 356: 133-139.
|
30 |
BINDER H, SELLMANN D. Röntgen-photoelektronenspektroskopische untersuchungen an pentacarbonyl-chrom-und-wolfram-komplexen mit stickstoffliganden/X-ray photoelectron studies of pentacarbonyl chromium and tungsten complexes with nitrogen ligands[J]. Zeitschrift Für Naturforschung B, 1978, 33(2): 173-179.
|
31 |
SANJINÉS R, WIEMER C, ALMEIDA J, et al. Valence band photoemission study of the Ti-Mo-N system[J]. Thin Solid Films, 1996, 290: 334-338.
|
32 |
WU Yi, LI Fan, CHEN Wenlong, et al. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting[J]. Advanced Materials, 2018, 30(38): 1803151.
|
33 |
YIN Ying, HAN Jiecai, ZHANG Yumin, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25): 7965-7972.
|
34 |
PLATANITIS P, PANAGIOTOU G D, BOURIKAS K, et al. Preparation of un-promoted molybdenum HDS catalysts supported on titania by equilibrium deposition filtration: Optimization of the preparative parameters and investigation of the promoting action of titania[J]. Journal of Molecular Catalysis A: Chemical, 2016, 412: 1-12.
|
35 |
DALPIAN G M, CHELIKOWSKY J R. Self-purification in semiconductor nanocrystals[J]. Physical Review Letters, 2006, 96(22): 226802.
|
36 |
LI Hong, ZHANG Qing, Chin Chong Ray YAP, et al. From bulk to monolayer MoS2: Evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390.
|
37 |
查全性. 电极过程动力学导论[M]. 北京: 科学出版社, 1976.
|
|
ZHA Quanxing. Introduction to electrode process dynamics[M]. Beijing: Science Press, 1976.
|
38 |
SCHMICKLER W, SANTOS E. Hydrogen reaction and electrocatalysis[M]// Interfacial Electrochemistry. Berlin, Heidelberg: Springer, 2010: 163-175.
|
39 |
孙世刚, 陈胜利. 电催化[M]. 北京: 化学工业出版社, 2013.
|
|
SUN Shigang, CHEN Shengli. Electrocatalysis[M]. Beijing: Chemical Industry Press, 2013.
|
40 |
TRASATTI S. Work function, electronegativity, and electrochemical behaviour of metals Ⅲ. Electrolytic hydrogen evolution in acid solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 39(1): 163-184.
|
41 |
KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum—Alumina catalysts from particle to neighboring particles[J]. The Journal of Physical Chemistry, 1964, 68(2): 411-412.
|