化工进展 ›› 2023, Vol. 42 ›› Issue (S1): 276-286.DOI: 10.16085/j.issn.1000-6613.2023-0423
张明焱1,2(), 刘燕1,2, 张雪婷1,2, 刘亚科1,2, 李从举3, 张秀玲1,2()
收稿日期:
2023-03-20
修回日期:
2023-06-20
出版日期:
2023-10-25
发布日期:
2023-11-30
通讯作者:
张秀玲
作者简介:
张明焱(2000—),女,硕士研究生,研究方向为催化剂、锌空气电池。E-mail:zhangmingyan1216@163.com。
基金资助:
ZHANG Mingyan1,2(), LIU Yan1,2, ZHANG Xueting1,2, LIU Yake1,2, LI Congju3, ZHANG Xiuling1,2()
Received:
2023-03-20
Revised:
2023-06-20
Online:
2023-10-25
Published:
2023-11-30
Contact:
ZHANG Xiuling
摘要:
基于氧还原反应(ORR)和氧析出反应(OER)的锌空气电池空气阴极动力学缓慢,制约了锌空气电池的进一步发展。贵金属催化剂具有高催化活性,但成本高、稳定性差等问题限制了其进一步应用。通过开发高活性、低成本非贵金属双功能催化剂能够有效解决上述问题。本文在介绍锌空气电池的结构和性质的基础上,系统介绍了不同种类的非贵金属催化剂在锌空气电池中的研究进展,如MOF衍生的双功能催化剂、非金属双功能催化剂、过渡金属双功能催化剂等,介绍了不同种类催化剂的优缺点,并对催化剂的催化活性中心和电化学性质进行阐述。最后,进一步指出对特定催化剂金属活性位点的增加和形貌结构的调控是该领域的研究重点,并提出了锌空气电池在表征方式、性能调控和优化电池中应采取的措施。
中图分类号:
张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286.
ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286.
图3 HOPG催化剂的CO2-TPD的研究结果[57]、吡啶和石墨N掺杂HOPG催化剂的ORR性能[57]、掺硫碳纳米管析氧反应的机理[59]和具有不同种类N掺杂或拓扑缺陷的石墨烯纳米带示意图[61]PR—吡咯氮;PN—吡啶氮;Q—边缘第四季氮;QN—体相季氮;C5—五碳环;C7—七碳环;C5+C7—五碳环与七碳环相邻
1 | FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29(7): 1604685 |
2 | MAINAR A R, LEONET O, BENGOECHEA M, et al. Alkaline aqueous electrolytes for secondary zinc-air batteries: An overview[J]. International Journal of Energy Research, 2016, 40(8): 1032-1049. |
3 | SUN Wei, WANG Fei, ZHANG Bao, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371(6524): 46-51. |
4 | ZHAO Zequan, FAN Xiayue, DING Jia, et al. Challenges in zinc electrodes for alkaline zinc-air batteries: Obstacles to commercialization[J]. ACS Energy Letters, 2019, 4(9): 2259-2270. |
5 | MEKHILEF S, SAIDUR R, SAFARI A. Comparative study of different fuel cell technologies[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 981-989. |
6 | DUAN C, KEE R J, ZHU H, et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells[J]. Nature, 2018, 557(7704): 217-222. |
7 | AHMADI P, TORABI S H, AFSANEH H, et al. The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3595-3608. |
8 | GUO Beibei, MA Ruguang, LI Zichuang, et al. Hierarchical N-doped porous carbons for Zn-air batteries and supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 20-32. |
9 | ZHU Qiancheng, ZHAO Danyang, CHENG Mingyu, et al. A new view of supercapacitors: Integrated supercapacitors[J]. Advanced Energy Materials, 2019, 9(36): 1901081. |
10 | ZONG Wei, CHUI Ningbo, TIAN Zhihong, et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors[J]. Advanced Science, 2021, 8(7): 2004142. |
11 | YOSHINO Akira. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
12 | CHAKRABORTY Arup, KUNNIKURUVAN Sooraj, KUMAR Sandeep, et al. Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1– x– y Co x Mn y O2 and LiNi1– x– y Co x Al y O2 [J]. Chemistry of Materials, 2020, 32(3): 915-952. |
13 | PEI Pucheng, WANG Keliang, MA Ze. Technologies for extending zinc-air battery’s cyclelife: A review[J]. Applied Energy, 2014, 128: 315-324. |
14 | MA Longtao, CHEN Shengmei, WANG Donghong, et al. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019, 9(12): 1803046. |
15 | HUANG Hongjiao, YU Deshuang, HU Feng, et al. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries[J]. Angewandte Chemie International Edition, 2022, 61(12): e202116068. |
16 | LI Yanguang, LU Jun. Metal-air batteries: Will they be the future electrochemical energy storage device of choice?[J]. ACS Energy Letters, 2017, 2(6): 1370-1377. |
17 | WANG Haofan, XU Qiang. Materials design for rechargeable metal-air batteries[J]. Matter, 2019, 1(3): 565-595. |
18 | ZHANG Xin, WANG Xingai, XIE Zhaojun, et al. Recent progress in rechargeable alkali metal-air batteries[J]. Green Energy & Environment, 2016, 1(1): 4-17. |
19 | FU Jing, LIANG Ruilin, LIU Guihua, et al. Recent progress in electrically rechargeable zinc–air batteries[J]. Advanced Materials, 2019, 31(31): 1805230. |
20 | FANG Wensheng, HUANG Lei, ZAMAN Shahid, et al. Recent progress on two-dimensional electrocatalysis[J]. Chemical Research in Chinese Universities, 2020, 36(4): 611-621. |
21 | SONG Junhua, XU Kang, LIU Nian, et al. Crossroads in the renaissance of rechargeable aqueous zinc batteries[J]. Materials Today, 2021, 45: 191-212. |
22 | TAN Peng, CHEN Bin, XU Haoran, et al. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives[J]. Energy & Environmental Science, 2017, 10(10): 2056-2080. |
23 | YI Jin, LIANG Pengcheng, LIU Xiaoyu, et al. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries[J]. Energy & Environmental Science, 2018, 11(11): 3075-3095. |
24 | CHAI Lulu, ZHANG Linjie, WANG Xian, et al. Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance[J]. Carbon, 2019, 146: 248-256. |
25 | SUN Yingjun, HUANG Bolong, LI Yingjie, et al. Trifunctional fishbone-like PtCo/Ir enables high-performance zinc-air batteries to drive the water-splitting catalysis[J]. Chemistry of Materials, 2019, 31(19): 8136-8144. |
26 | WANG Guanzhi, CHANG Jinfa, KOUL Supriya, et al. CO2 bubble-assisted Pt exposure in PtFeNi porous film for high-performance zinc-air battery[J]. Journal of the American Chemical Society, 2021, 143(30): 11595-11601. |
27 | PACHFULE P, CHEN Y, SAHOO S C, et al. Structural isomerism and effect of fluorination on gas adsorption in copper-tetrazolate based metal organic frameworks[J]. Chemistry of Materials, 2011, 23(11): 2908-2916. |
28 | JIN Song. How to effectively utilize MOFs for electrocatalysis[J]. ACS Energy Letters, 2019, 4(6): 1443-1445. |
29 | YU Lejian, YANG Chuangchuang, ZHANG Wendu, et al. Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts[J]. Journal of Colloid and Interface Science, 2020, 575: 406-415. |
30 | YANG Hong bin, MIAO Jianwei, HUNG Sungfu, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst[J]. Science Advances, 2016, 2(4): e1501122. |
31 | ZHANG Suyuan, YANG Weiguang, LIANG Yulin, et al. Template-free synthesis of non-noble metal single-atom electrocatalyst with N-doped holey carbon matrix for highly efficient oxygen reduction reaction in zinc-air batteries[J]. Applied Catalysis B: Environmental, 2021, 285: 119780. |
32 | HIGGINS Drew, CHEN Zhu, CHEN Zhongwei. Nitrogen doped carbon nanotubes synthesized from aliphatic diamines for oxygen reduction reaction[J]. Electrochimica Acta, 2011, 56(3): 1570-1575. |
33 | LAI Qingxue, ZHAO Yingxuan, LIANG Yanyu, et al. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction[J]. Advanced Functional Materials, 2016, 26(45): 8334-8344. |
34 | YANG Meijia, HU Xuanhe, FANG Zhengsong, et al. Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li-S batteries: Highly exposed graphitic nitrogen matters[J]. Advanced Functional Materials, 2017, 27(36): 1701971. |
35 | ZHANG Peng, SUN Fang, XIANG Zhonghua, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science, 2014, 7(1): 442-450. |
36 | YANG Qi, LIU Rumeng, PAN Yanan, et al. ZIF-8-derived N-doped porous carbon wrapped in porous carbon films as an air cathode for flexible solid-state Zn-air batteries[J]. Journal of Colloid and Interface Science, 2022, 628: 691-700. |
37 | QIAN Yuhong, HU Zhigang, GE Xiaoming, et al. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries[J]. Carbon, 2017, 111: 641-650. |
38 | HAN Junxing, BAO Hongliang, WANG Jianqiang, et al. 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery[J]. Applied Catalysis B: Environmental, 2021, 280: 119411. |
39 | ZHANG Huabin, LIU Guigao, SHI Li, et al. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis[J]. Advanced Energy Materials, 2018, 8(1): 1701343. |
40 | JIAO Long, WANG Yang, JIANG Hailong, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018, 30(37): e1703663. |
41 | LI Le, CHEN Yinjuan, XING Haoran, et al. Single-atom Fe-N5 catalyst for high-performance zinc-air batteries[J]. Nano Research, 2022, 15(9): 8056-8064. |
42 | SONG Kexin, FENG Yu, ZHOU Xinyan, et al. Exploiting the trade-offs of electron transfer in MOF-derived single Zn/Co atomic couples for performance-enhanced zinc-air battery[J]. Applied Catalysis B: Environmental, 2022, 316: 121591. |
43 | JIANG Wenjie, GU Lin, LI Li, et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-N x [J]. Journal of the American Chemical Society, 2016, 138(10): 3570-3578. |
44 | NIU Qijian, CHEN Binling, GUO Junxia, et al. Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn-air battery[J]. Nano-Micro Letters, 2019, 11(1): 8-24. |
45 | SUN Qiuhong, ZHU Kai, JI Xiangli, et al. MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries[J].Science China Materials, 2022, 65(6): 1453-1462. |
46 | LI K, CHEN W. Recent progress in high-entropy alloys for catalysts: Synthesis, applications, and prospects[J]. Materials Today Energy, 2021, 20: 100638. |
47 | CHEN Jun, LI Liandong, YANG Liu, et al. A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application[J]. Chinese Journal of Chemical Engineering, 2022, 43: 161-168. |
48 | ZHANG Jingjing, TANG Fumin, WAN Kechuang, et al. MOF-derived CoFe alloy nanoparticles encapsulated within N,O co-doped multilayer graphitized shells as an efficient bifunctional catalyst for zinc-air batteries[J]. Journal of Materials Chemistry A, 2022, 10(28): 14866-14874. |
49 | SHAO Qi, LIU Jiaqi, WU Qiong, et al. In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-air battery[J]. Nano-Micro Letters, 2019, 11(1): 4. |
50 | TIAN Yuhui, XU Li, LI Meng, et al. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries[J]. Nano-Micro Letters, 2021, 13(1): 3. |
51 | ZHANG Fuping, CHEN Long, ZHANG Yinglin, et al. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks in situ sacrificial strategy for performance-enhanced zinc-air batteries[J]. Chemical Engineering Journal, 2022, 447: 137490. |
52 | AHSAN M A, HE T, EID K, et al. Controlling the interfacial charge polarization of MOF-derived 0D-2D vdW architectures as a unique strategy for bifunctional oxygen electrocatalysis[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 3919-3929. |
53 | HU Chuangang, DAI Liming. Doping of carbon materials for metal-free electrocatalysis[J]. Advanced Materials, 2019, 31(7): 1804672. |
54 | ZHANG Jintao, ZHAO Zhenghang, XIA Zhenhai, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452. |
55 | MA Ruguang, ZHOU Yao, LI Pengxi, et al. Self-assembly of nitrogen-doped graphene-wrapped carbon nanoparticles as an efficient electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2016, 216: 347-354. |
56 | UNNI S M, DEVULAPALLY S, KARJULE N, et al. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction[J]. Journal of Materials Chemistry, 2012, 22(44): 23506-23513. |
57 | GUO Donghui, SHIBUYA Riku, AKIBA Chisato, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. |
58 | YANG Zhi, YAO Zhen, LI Guifa, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211. |
59 | EL-SAWY A M, MOSA I M, SU D, et al. Oxygen reactions: Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis[J]. Advanced Energy Materials, 2016, 6(5): 1501966. |
60 | TANG Cheng, ZHANG Qiang. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Advanced Materials, 2017, 29(13): 1604103. |
61 | TANG Cheng, WANG Haofan, CHEN Xiang, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Advanced Materials, 2016, 28(32): 6845-6851. |
62 | LIU Tao, DU Xinjie, LI Shuai, et al. Carbothermal redox reaction in constructing defective carbon as superior oxygen reduction catalysts[J]. Nanoscale, 2022, 14(38): 14248-14254. |
63 | YANG Liu, SHI Lei, WANG Di, et al. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery[J]. Nano Energy, 2018, 50: 691-698. |
64 | NIU Yanli, TENG Xue, GONG Shuaiqi, et al. A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn-air batteries[J]. Journal of Materials Chemistry A, 2020, 8(27): 13725-13734. |
65 | WU Mengchen, GUO Bingkun, NIE Anmin, et al. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. Journal of Colloid and Interface Science, 2020, 561: 585-592. |
66 | XIE Xiaoying, SHANG Lu, SHI Run, et al. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries[J]. Nanoscale, 2020, 12(24): 13129-13136. |
67 | YANG Liu, WANG Di, Yanlong LYU, et al. Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-air batteries[J]. Carbon, 2019, 144: 8-14. |
68 | ENMAN L J, BURKE M S, BATCHELLOR A S, et al. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media[J]. ACS Catalysis, 2016, 6(4): 2416-2423. |
69 | XIE Weichao, LIU Yijiang, CHEN Hongbiao, et al. Iron-nickel alloy nanoparticles encapsulated in nitrogen-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Journal of Colloid and Interface Science, 2022, 625: 278-288. |
70 | WEI Licheng, ZHANG Yufei, YANG Yang, et al. Manipulating the electronic structure of graphite intercalation compounds for boosting the bifunctional oxygen catalytic performance[J]. Small, 2022, 18(13): 2107667. |
71 | WANG Biao, TANG Jie, ZHANG Xiaohua, et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: Template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries[J]. Chemical Engineering Journal, 2022, 437: 135295. |
72 | QIU Liuzhe, HAN Xiaopeng, LU Qi, et al. Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(12): 3554-3561. |
73 | ZHONG Yaotang, PAN Zhenghui, WANG Xianshu, et al. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery[J]. Advanced Science, 2019, 6(11): 1802243. |
74 | TAN Peng, CHEN Bin, XU Haoran, et al. In-situ growth of Co3O4 nanowire-assembled clusters on nickel foam for aqueous rechargeable Zn-Co3O4 and Zn-air batteries[J]. Applied Catalysis B: Environmental, 2019, 241: 104-112. |
75 | BIAN Juanjuan, CHENG Xiaopeng, MENG Xiaoyi, et al. Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable zinc-air batteries and self-charging power system[J]. ACS Applied Energy Materials, 2019, 2(3): 2296-2304. |
76 | ALEGRE C, BUSACCA C, DI BLASI A, et al. Electrospun MnCo2O4/carbon-nanofibers as oxygen electrode for alkaline zinc-air batteries[J]. Journal of Energy Storage, 2022, 55: 105404. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[6] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[7] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[8] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[9] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[12] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[13] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[14] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[15] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |