化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4905-4916.DOI: 10.16085/j.issn.1000-6613.2022-1920
收稿日期:
2022-10-17
修回日期:
2022-12-26
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
康雪
作者简介:
王晨(1987—),男,副教授,研究方向为高效散热技术。E-mail:chenwang87@nuc.edu.cn。
基金资助:
WANG Chen1,3(), BAI Haoliang1,3, KANG Xue2,3()
Received:
2022-10-17
Revised:
2022-12-26
Online:
2023-09-15
Published:
2023-09-28
Contact:
KANG Xue
摘要:
设计了大功率UV-LED散热和纳米TiO2光催化酸性红26耦合系统,采用污水循环冷却UV-LED提高灯珠工作效率的同时实现污水光催化降解脱色,将污水循环系统与紫外光源冷却耦合是创新点。采用模拟优化UV-LED灯珠排布,以污水脱色为探针反应,发现污水冷却能使UV-LED结温降低41.2%,平均辐照度和污水脱色效率分别提高11.03%和1.68倍。环境因素对污水降解性能影响结果表明,光催化活性与污染物浓度成反比,与催化剂初始浓度成正比,达0.75g/L后趋于稳定;考虑吸附和氧化基团对降解速率影响,最优pH为2。本设计与传统环隙式反应器对比,表观量子产率和脱色效率分别是后者的2.3倍和4.3倍,能耗仅为后者的9.1%。该耦合系统在UV-LED的温度控制和废水处理领域具有潜在应用价值。
中图分类号:
王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916.
WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916.
排布方式 | 辐照度最大值/W∙m-2 | 辐照度平均值/W∙m-2 | 均匀度/% |
---|---|---|---|
均匀排布 | 416.68 | 178.68 | 65.06 |
五边形排布 | 442.99 | 179.79 | 64.08 |
二三形排布 | 603.65 | 180.24 | 37.54 |
表1 不同排布方式仿真结果分析
排布方式 | 辐照度最大值/W∙m-2 | 辐照度平均值/W∙m-2 | 均匀度/% |
---|---|---|---|
均匀排布 | 416.68 | 178.68 | 65.06 |
五边形排布 | 442.99 | 179.79 | 64.08 |
二三形排布 | 603.65 | 180.24 | 37.54 |
1 | 李春庚, 甄新, 李亚丽, 等. 印染废水染料降解技术研究进展[J]. 应用化工, 2022, 51(5): 1439-1444. |
LI Chungeng, ZHEN Xin, LI Yali, et al. Advances in dye degradation technology of printing and dyeing wastewater[J]. Applied Chemical Industry, 2022, 51(5): 1439-1444. | |
2 | 姜金宏, 何席伟, 熊晓敏, 等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理, 2021, 41(6): 77-87. |
JIANG Jinhong, HE Xiwei, XIONG Xiaomin, et al. Research progress on toxicity characteristics and control technologies of textile dyeing wastewater[J]. Industrial Water Treatment, 2021, 41(6): 77-87. | |
3 | DOS SANTOS A B, CERVANTES F J, VAN LIER J B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology[J]. Bioresource Technology, 2007, 98(12): 2369-2385. |
4 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
REN Nanqi, ZHOU Xianjiao, GUO Wanqian, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
5 | SRINIVASAN S, SADASIVAM S K. Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems[J]. Journal of Water Process Engineering, 2018, 22: 180-191. |
6 | CAO C H, XIAO L, CHEN C H, et al. In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction-precipitation method and their application in adsorption of reactive azo dye[J]. Powder Technology, 2014, 260: 90-97. |
7 | BAYRAMOĞLU G, YAKUP ARıCA M. Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor [J]. Journal of Hazardous Materials, 2007, 143(1/2): 135-143. |
8 | IMRAN M, ARSHAD M, NEGM F, et al. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4 [J]. Ecotoxicology and Environmental Safety, 2016, 124: 42-49. |
9 | BU J Q, YUAN L, ZHANG N, et al. High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite[J]. Diamond and Related Materials, 2020, 101: 107604. |
10 | THABEDE P M, DAVID SHOOTO N, NAIDOO E B. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds[J]. South African Journal of Chemical Engineering, 2020, 33: 39-50. |
11 | 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801. |
JIA Yanping, ZHANG Zhen, TONG Zewei, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801. | |
12 | GHANBARI F, MORADI M. A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 499-506. |
13 | CHIU Y H, CHANG T F, CHEN C Y, et al. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts[J]. Catalysts, 2019, 9(5): 430. |
14 | CHANDRABOSE G, DEY A, GAUR S S, et al. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J]. Chemosphere, 2021, 279: 130467. |
15 | KUMARAN V, SUDHAGAR P, KONGA A, et al. Photocatalytic degradation of synthetic organic reactive dye wastewater using GO-TiO2 nanocomposite[J]. Polish Journal of Environmental Studies, 2020, 29(2): 1683-1690. |
16 | DU F Q, YANG D M, KANG T X, et al. SiO2/Ga2O3 nanocomposite for highly efficient selective removal of cationic organic pollutant via synergistic electrostatic adsorption and photocatalysis[J]. Separation and Purification Technology, 2022, 295: 121221. |
17 | 李晋闽, 闫建昌, 郭亚楠, 等. 紫外LED研究进展[J]. 科技导报, 2021, 39(14): 30-41. |
LI Jinmin, YAN Jianchang, GUO Yanan, et al. Recent progress of ultraviolet light-emitting diodes[J]. Science & Technology Review, 2021, 39(14): 30-41. | |
18 | SONG K, MOHSENI M, TAGHIPOUR F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review[J]. Water Research, 2016, 94: 341-349. |
19 | ESKANDARIAN M R, FAZLI M, RASOULIFARD M H, et al. Decomposition of organic chemicals by zeolite-TiO2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation[J]. Applied Catalysis B: Environmental, 2016, 183: 407-416. |
20 | ZHU L, CUI L Y, HUANG Q W, et al. Performance study of SOL&PID system for the degradation of Acid Red 26 and 4-chlorophenol[J]. Energy Conversion and Management, 2017, 136: 361-371. |
21 | LIANG R, VAN LEUWEN J C, BRAGG L M, et al. Utilizing UV-LED pulse width modulation on TiO2 advanced oxidation processes to enhance the decomposition efficiency of pharmaceutical micropollutants[J]. Chemical Engineering Journal, 2019, 361: 439-449. |
22 | SHENAI K, DUDLEY M, DAVIS R F. Current status and emerging trends in wide bandgap (WBG) semiconductor power switching devices[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3055-N3063. |
23 | CHENG T, LUO X B, HUANG S Y, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution[J]. International Journal of Thermal Sciences, 2010, 49(1): 196-201. |
24 | NARENDRAN N, GU Y, FREYSSINIER J P, et al. Solid-state lighting: Failure analysis of white LEDs[J]. Journal of Crystal Growth, 2004, 268(3/4): 449-456. |
25 | KALBASI R. Introducing a novel heat sink comprising PCM and air—Adapted to electronic device thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120914. |
26 | XU Z. Heat transfer performance of the rectangular heat sinks with non-uniform height thermosyphons for high power LED lamps cooling[J]. Case Studies in Thermal Engineering, 2021, 25: 101013. |
27 | WANG Z B, ZHANG J, LIU Y C, et al. Study on the water cooling technology for the high power LED array[C]//2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control. Shenyang: IEEE, 2014: 1289-1292. |
28 | WAN Z M, LIU J, SU K L, et al. Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs[J]. Microelectronics Journal, 2011, 42(5): 632-637. |
29 | NOVAK V, ABDEL-KHALIK S I, SADOWSKI D L, et al. Investigation of mist cooling for the Electra KrF laser hibachi[J]. Fusion Science and Technology, 2007, 52(3): 483-488. |
30 | 陈萨如拉, 朱丽, 孙勇. 高热流密度器件散热技术的研究进展[J]. 流体机械, 2015,43(5): 39-45. |
CHEN Sarula, ZHU Li, SUN Yong. Research progress of cooling technologies for high heat flux density devices[J]. Fluid Machinery, 2015, 43(5): 39-45. | |
31 | 倪笠, 崔晓钰, 马柯. 大功率UV-LED固化灯水冷散热器[J]. 光电子技术, 2016,36(2): 130-134. |
NI Li, CUI Xiaoyu, MA Ke. A liquid cold plate for high power UV-LED curing lamps[J]. Optoelectronic Technology, 2016, 36(2): 130-134. | |
32 | KANG X, WANG Y P, HUANG Q W, et al. Phase-change immersion cooling high power light emitting diodes and heat transfer improvement[J]. Microelectronics Reliability, 2017, 79: 257-264. |
33 | CUI L Y, ZHU L, HUANG Q W, et al. Performance analysis of a solar photochemical photovoltaic hybrid system for decolorization of Acid Red 26 (AR 26)[J]. Energy, 2017, 127: 209-217. |
34 | KIM L, CHOI J H, JANG S H, et al. Thermal analysis of LED array system with heat pipe[J]. Thermochimica Acta, 2007, 455(1/2): 21-25. |
35 | YANG K S, LIN C C, SHYU J C, et al. Performance and two-phase flow pattern for micro flat heat pipes[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1115-1123. |
36 | CHEN J, OLLIS D F, RULKENS W H, et al. Kinetic processes of photocatalytic mineralization of alcohols on metallized titanium dioxide[J]. Water Research, 1999, 33(5): 1173-1180. |
37 | LIN H W, ZHANG K, YANG G L, et al. Ultrafine nano 1T-MoS2 monolayers with NiO x as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 279: 119387. |
38 | American National Standard Institute, Inc. Electronic projection-fixed resolution projectors: [S]. New York: National Association of Photographic Manufacture, Inc, 1997. |
39 | JALLOULI N, PASTRANA-MARTÍNEZ L M, RIBEIRO A R, et al. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system[J]. Chemical Engineering Journal, 2018, 334: 976-984. |
40 | PARK S J, JANG D, YOOK S J, et al. Optimization of a chimney design for cooling efficiency of a radial heat sink in a LED downlight[J]. Energy Conversion and Management, 2016, 114: 180-187. |
41 | 谢倩雯. 温度对LED性能的影响[J]. 物联网技术, 2012, 2(3): 37-38, 41. |
XIE Qianwen. The influence of temperature on the function of LED[J]. Internet of Things Technologies, 2012, 2(3): 37-38, 41. | |
42 | HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96. |
43 | QI S Y, LIU X T, ZHANG R Y, et al. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction[J]. Inorganic Chemistry Communications, 2021, 133: 108907. |
44 | TUNESI S, ANDERSON M. Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes[J]. The Journal of Physical Chemistry, 1991, 95(8): 3399-3405. |
45 | 全学军, 杨露, 程治良, 等. 偶氮染料在气-液-固循环浆态光催化反应器中的降解脱氮[J]. 化工学报, 2010, 61(11): 2829-2835. |
QUAN Xuejun, YANG Lu, CHENG Zhiliang, et al. Degradation and nitrogen removal of azo dye in gas-liquid-solid circulating slurry photocatalytic reactor[J]. CIESC Journal, 2010, 61(11): 2829-2835. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[6] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[7] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[8] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[9] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[10] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[11] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[12] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[13] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[14] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[15] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |