化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4882-4893.DOI: 10.16085/j.issn.1000-6613.2022-1894
李东泽1(), 张祥2, 田键2,3, 胡攀2, 姚杰4, 朱林5, 卜昌盛1, 王昕晔1()
收稿日期:
2022-10-12
修回日期:
2023-01-01
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
王昕晔
作者简介:
李东泽(1997—),男,硕士研究生,研究方向为燃烧污染物控制。E-mail:dongze.li@foxmail.com。
基金资助:
LI Dongze1(), ZHANG Xiang2, TIAN Jian2,3, HU Pan2, YAO Jie4, ZHU Lin5, BU Changsheng1, WANG Xinye1()
Received:
2022-10-12
Revised:
2023-01-01
Online:
2023-09-15
Published:
2023-09-28
Contact:
WANG Xinye
摘要:
随着水泥行业“超低排放”的推进,NO x 排放要求逐步向100mg/m3甚至50mg/m3看齐。水泥窑碳基脱硝通过控制煤粉燃烧产生焦炭和CO还原NO x,具有无须添加脱硝剂、避免氨逃逸、与生产流程结合良好、改造和运行成本低的优势,可作为水泥行业实现“超低排放”的辅助工艺。本文首先介绍了碳基脱硝的主要实施方式,包括回转窑低氮燃烧、分解炉分级燃烧和增设还原区等。然后讨论了焦炭和CO还原NO x 的特性和机制。焦炭还原效果与其比表面积和活性位点有关。CO还原反应可在无催化条件下发生,但CO体积分数小于1%时效果可以忽略。焦炭、CaO和煤灰等可作为催化剂,将CO还原NO的温度窗口下限从900℃降低至600~800℃。最后综述了CO对选择性非催化法(SNCR)的影响及其机制,认为碳基脱硝与氨基脱硝具有耦合协同潜质。水泥窑碳基脱硝的进一步研究可以关注以下方面:在更为全面和系统的工况下评价脱硝特性,试验和理论结合明确脱硝机制,开发碳基与氨基协同脱硝技术等。
中图分类号:
李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893.
LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893.
实施范围 | 氮氧化物 (以NO2计) | 氨① | 现有企业执行时间 | 新建企业执行时间 | 标准号 | 备注 |
---|---|---|---|---|---|---|
全国 | 400 | 10 | 2015年07月01日起 | 2014年03月01日起 | GB 4915—2013[ | |
重点地区 | 320 | 8 | 依地区制定② | 依地区制定② | GB 4915—2013[ | |
安徽省 | 100 | 8 | 2020年10月01日起 | 2020年03月14日起 | DB 34/3576—2020[ | |
江苏省 | 100 | 8 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅰ | |
江苏省 | 50 | 8 | 2024年01月01日起 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅱ |
河南省 | 100 | 8 | 2021年01月01日起 | 2020年06月01日起 | DB 41/1953—2020[ | |
河南省 | 50 | 8 | 分阶段分环节③ | 分阶段分环节③ | 征求意见稿[ | 超低排放标准 |
河北省 | 100 | 8 | 2021年10月01日起 | 2020年03月04日起 | DB 13/2167—2020[ | 超低排放标准 |
宁夏回族自治区 | 100 | 8 | 2022年底前实现 | 2022年底前实现 | 电子通告[ | 超低排放标准 |
浙江省 | 100 | 2020年12月15日起④ | 2020年12月15日起④ | 改造实施方案[ | 超低排放标准 | |
浙江省 | 50 | 2025年6月底前 | 2025年6月前 | 改造实施方案[ | 超低排放标准 | |
山西省 | 50 | 5 | 分阶段分地区⑤ | 分阶段分地区⑤ | 改造实施方案[ | 超低排放标准 |
表1 水泥窑及窑尾余热利用系统氮氧化物和氨排放限值 (mg/m3)
实施范围 | 氮氧化物 (以NO2计) | 氨① | 现有企业执行时间 | 新建企业执行时间 | 标准号 | 备注 |
---|---|---|---|---|---|---|
全国 | 400 | 10 | 2015年07月01日起 | 2014年03月01日起 | GB 4915—2013[ | |
重点地区 | 320 | 8 | 依地区制定② | 依地区制定② | GB 4915—2013[ | |
安徽省 | 100 | 8 | 2020年10月01日起 | 2020年03月14日起 | DB 34/3576—2020[ | |
江苏省 | 100 | 8 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅰ | |
江苏省 | 50 | 8 | 2024年01月01日起 | 2022年07月01日起 | DB 32/4149—2021[ | 阶段Ⅱ |
河南省 | 100 | 8 | 2021年01月01日起 | 2020年06月01日起 | DB 41/1953—2020[ | |
河南省 | 50 | 8 | 分阶段分环节③ | 分阶段分环节③ | 征求意见稿[ | 超低排放标准 |
河北省 | 100 | 8 | 2021年10月01日起 | 2020年03月04日起 | DB 13/2167—2020[ | 超低排放标准 |
宁夏回族自治区 | 100 | 8 | 2022年底前实现 | 2022年底前实现 | 电子通告[ | 超低排放标准 |
浙江省 | 100 | 2020年12月15日起④ | 2020年12月15日起④ | 改造实施方案[ | 超低排放标准 | |
浙江省 | 50 | 2025年6月底前 | 2025年6月前 | 改造实施方案[ | 超低排放标准 | |
山西省 | 50 | 5 | 分阶段分地区⑤ | 分阶段分地区⑤ | 改造实施方案[ | 超低排放标准 |
反应温度/℃ | NO体积分数/% | CO体积分数/% | H2O体积分数/% | CO2体积分数/% | 停留时间 | NO还原率/% | 参考文献 |
---|---|---|---|---|---|---|---|
950 | 0.03 | 0.5 | 0 | 0 | 13~16ms | 0 | 李竞岌等[ |
975 | 0.05 | 0.2 | 0 | 0 | <55s | 0 | 付梦龙等[ |
900 | 0.1 | 4 | 2 | 15 | <3s | 55 | 杨建蒙等[ |
900 | 0.1 | 4 | 2 | 25 | 1.42s | 29 | 孙立超[ |
900 | 0.1 | 1 | 2 | 15 | 1.42s | 0 | 李森等[ |
900 | 0.1 | 4 | 2 | 15 | 1.42s | 29 | 李森等[ |
900 | 0.1 | 5 | 2 | 15 | 1.42s | 38 | 李森等[ |
表2 不同条件下CO还原NO还原率
反应温度/℃ | NO体积分数/% | CO体积分数/% | H2O体积分数/% | CO2体积分数/% | 停留时间 | NO还原率/% | 参考文献 |
---|---|---|---|---|---|---|---|
950 | 0.03 | 0.5 | 0 | 0 | 13~16ms | 0 | 李竞岌等[ |
975 | 0.05 | 0.2 | 0 | 0 | <55s | 0 | 付梦龙等[ |
900 | 0.1 | 4 | 2 | 15 | <3s | 55 | 杨建蒙等[ |
900 | 0.1 | 4 | 2 | 25 | 1.42s | 29 | 孙立超[ |
900 | 0.1 | 1 | 2 | 15 | 1.42s | 0 | 李森等[ |
900 | 0.1 | 4 | 2 | 15 | 1.42s | 29 | 李森等[ |
900 | 0.1 | 5 | 2 | 15 | 1.42s | 38 | 李森等[ |
1 | 刘作毅. 水泥产量变化解读(上)[J]. 中国建材, 2021, 70(8): 101-107. |
LIU Zuoyi. Interpretation of changes in cement annual output (part1)[J]. China Building Materials, 2021, 70 (8): 101-107. | |
2 | 胡和兵, 王牧野, 吴勇民, 等. 氮氧化物的污染与治理方法[J]. 环境保护科学, 2006, 32(4): 5-9. |
HU Hebing, WANG Muye, WU Yongmin, et al. Pollution of nitrogen oxides and its treating method[J]. Environmental Protection Science, 2006, 32(4): 5-9. | |
3 | 余其俊, 陈容, 张同生, 等. 水泥工业烟气脱硫脱硝技术研究进展[J]. 硅酸盐通报, 2020, 39(7): 2015-2032. |
YU Qijun, CHEN Rong, ZHANG Tongsheng, et al. Recent development of flue gas de-SO2 and de-NO x technology for cement industry[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2015-2032. | |
4 | 贾华平. 概论水泥窑脱硝的技术路线[J]. 中国水泥, 2022(3): 60-64. |
JIA Huaping. The introduction about the technical route of denitrification in cement kiln[J]. China Cement, 2022(3): 60-64. | |
5 | 王建, 龚志军, 孟昭磊, 等. 白云鄂博稀土尾矿催化CO还原NO实验研究[J]. 稀有金属与硬质合金, 2020, 48(3): 38-44. |
WANG Jian, GONG Zhijun, MENG Zhaolei, et al. Experimental study on catalytic reduction of NO with CO by Bayan Obo rare earth tailings[J]. Rare Metals and Cemented Carbides, 2020, 48(3): 38-44. | |
6 | 高密军, 罗振. 我国水泥厂脱硝技术现状问题及展望[C]//2017水泥工业污染防治最佳使用技术研讨会会议文集. 合肥: 中国建材集团水泥科技培训中心, 2017: 234-237. |
GAO Mijun, LUO Zhen. Technical problems and prospects of denitrification in China’s cement plant[C]//2017 Reference Document on Best Available Techniques for Cement Industries Pollution Prevention and Control. Hefei: China Building Materials Group Cement Technology Training Center, 2017: 234-237. | |
7 | 崔恒波, 陈杰, 鲍玉进, 等. 水泥窑分级燃烧CO还原NO研究[J]. 水泥, 2021(10): 29-30. |
CUI Hengbo, CHEN Jie, BAO Yujin, et al. Research on NO reduction of the staged combustion about CO in cement kiln[J]. Cement, 2021(10): 29-30. | |
8 | 吾慧星. 水泥窑炉煤基-NO x 深度还原特性试验研究[D]. 北京: 中国科学院大学, 2021. |
WU Huixing. Experimental study on deep reduction characteristic of NO x with coal-based reductant in a cement kiln[D]. Beijing: University of Chinese Academy of Sciences, 2021. | |
9 | 胡芝娟. 分解炉氮氧化物转化机理及控制技术研究[D]. 武汉: 华中科技大学, 2004. |
HU Zhijuan. The study on mechanism of nitrogen oxides transformation and control technology for precalciner[D]. Wuhan: Huazhong University of Science and Technology, 2004. | |
10 | 赵睿敏, 于永现, 凌金辉, 等. 脱硝分解炉的设计及实际应用[J]. 水泥技术, 2022(2): 40-45. |
ZHAO Ruimin, YU Yongxian, LING Jinhui, et al. Design and practical application of denitration calciner[J]. Cement Technology, 2022(2): 40-45. | |
11 | 王新频, 赵娇, 乔彬, 等. 国内外水泥熟料生产线降氮脱硝技术及应用(上)[J]. 中国水泥, 2016(6): 87-92. |
WANG Xinpin, ZHAO Jiao, QIAO Bin, et al. Technology and application of nitrogen reduction and denitrification in cement production line at home and abroad[J]. China Cement, 2016(6): 87-92. | |
12 | 江梅, 李晓倩, 纪亮, 等. 我国水泥工业大气污染物排放标准的修订历程与思考[J]. 环境科学, 2014, 35(12): 4759-4766. |
JIANG Mei, LI Xiaoqian, JI Liang, et al. Revision process and thinking of emission standard of air pollutants for cement industry[J]. Environmental Science, 2014, 35(12): 4759-4766. | |
13 | 环境保护部. 国家质量监督检验检疫总局. 水泥工业大气污染物排放标准: [S]. 北京: 中国环境科学出版社, 2013. |
Ministry of Ecology and Environment of the People’s Republic of China, General Administration of Quality Supervision. Emission standard of air pollutants for cement industry: [S]. Beijing: China Environmental Science Press, 2013. | |
14 | 安徽省市场监督管理局. 水泥工业大气污染物排放标准: [S]. |
Administration for Market Regulation Anhui Province. Emission standard of air pollutants for cement industry: [S]. | |
15 | 江苏省生态环境厅, 江苏省市场监督管理局. 水泥工业大气污染物排放标准: [S]. |
Department of Ecology and Environment of Jiangsu Province, Administration for Market Regulation Jiangsu Province. Emission standard of air pollutants for cement industry: [S]. | |
16 | 河南省生态环境厅, 河南省市场监督管理局. 水泥工业大气污染物排放标准: [S]. |
Department of Ecology and Environment of Henan Province, Administration for Market Regulation Henan Province. Emission standard of air pollutants for cement industry: [S]. | |
17 | 河南省生态环境厅. 河南省水泥行业超低排放改造实施方案(征求意见稿)[EB/OL]. (2020-04-27) [2022-06-26]. . |
Department of Ecology and Environment of Henan Province. Implementation plan for ultra low emission technical transformation of Henan cement industry (Draft for comments)[EB/OL]. (2020-04-27) [2022-06-26]. . | |
18 | 河北省生态环境厅, 河北省市场监督管理局. 水泥工业大气污染物超低排放标准: [S]. |
Department of Ecology and Environment of Hebei Province, Administration for Market Regulation Hebei Province. Ultra low emission standard of air pollutants for cement industry: [S]. | |
19 | 宁夏回族自治区生态环境厅. 水泥行业烟气超低排放改造实施方案[EB/OL]. (2021-02-23) [2022-06-26]. . |
Department of Ecology and Environment of Ningxia Hui Autonomous Region. Implementation plan for ultra low emission technical transformation of cement industry[EB/OL]. (2021-02-23) [2022-06-26]. . | |
20 | 浙江省生态环境厅. 浙江省水泥行业超低排放改造实施方案(征求意见稿)[EB/OL]. (2020-07-23) [2022-06-26]. . |
Department of Ecology and Environment of Zhejiang Province. Implementation plan for ultra low emission technical transformation of Zhejiang province cement industry (Draft for comments)[EB/OL]. (2020-07-23) [2022-06-26]. . | |
21 | 山西省生态环境厅. 山西省水泥行业超低排放改造实施方案[EB/OL]. (2021-12-21) [2022-06-26]. . |
Department of Ecology and Environment of Shanxi Province. Implementation plan for ultra low emission technical transformation of Shanxi province cement industry[EB/OL]. (2021-12-21) [2022-06-26]. . | |
22 | 中国水泥协会. 水泥工业大气污染物超低排放标准: T/CCAS 022—2022 [S]. 北京: 中国标准出版社, 2022. |
China Cement Association. Ultra low emission standard of air pollutants for cement industry: T/CCAS 022—2022 [S]. Beijing: Standards Press of China, 2022. | |
23 | 何艳, 王连勇, 王睿. 水泥窑低氮燃烧技术的发展现状[C]//第十一届全国能源与热工学术年会论文集. 马鞍山: 中国金属学会能源与热工分会, 2021: 44-47. |
HE Yan, WANG Lianyong, WANG Rui. Development status of low-nitrogen combustion in cement rotary kiln[C]//The 11th National Annual Conference on Energy and Thermal Engineering. Ma’anshan: Energy and Thermal Engineering Branch of the Chinese Metal Society, 2021: 44-47. | |
24 | 孙立超. 水泥分解炉NO x 脱除机制研究[D]. 北京: 华北电力大学, 2018. |
SUN Lichao. Study on mechanism of NO x Reduction in cement calciner[D]. Beijing: North China Electric Power University, 2018. | |
25 | 张聚伟. 高温条件下NO-焦炭反应动力学的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
ZHANG Juwei. Kinetic study on NO-char reaction at high temperature[D]. Harbin: Harbin Institute of Technology, 2009. | |
26 | 陈萍. 煤燃烧过程中NO x 前驱物析出特性及焦炭-NO/N2O异相还原机理研究[D]. 马鞍山: 安徽工业大学, 2020. |
CHEN Ping. Study on the precipitation characteristics of NO x precursor and the heterogeneous reduction mechanism of char-NO/N2O during coal combustion[D]. Ma’anshan: Anhui University of Technology, 2020. | |
27 | 戎旭. 水泥分解炉CO脱硝实验及机理研究[D]. 北京: 华北电力大学, 2019. |
RONG Xu. Study on experiment and mechanism of denitrification by CO in cement precalciner[D]. Beijing: North China Electric Power University, 2019. | |
28 | 王晓伟, 蔡军, 任强强, 等. 水泥窑炉窑尾烟气NO x 碳热还原数值模拟研究[J/OL]. 北京: 中国电机工程学报, (2022-04-07) [2022-06-26]. . |
WANG Xiaowei, CAI Jun, REN Qiangqiang, et al. Numerical simulation on carbothermal reduction of NO x in flue gas from cement kiln[J/OL]. Beijing: Proceedings of the CSEE, (2022-04-07) [2022-06-26]. . | |
29 | WU Huixing, REN Qiangqiang, CAI Jun, et al. Research on the dynamic process of NO heterogeneous and homogeneous reduction with cement raw meal in vertical tubular reactor[J]. Journal of the Energy Institute, 2019, 93(3): 878-888. |
30 | TENG Hsisheng, SUUBERG Eric M, CALO Joseph M. Studies on the reduction of nitric oxide by carbon: The NO-carbon gasification reaction[J]. Energy & Fuels, 1992, 6(4): 398-406. |
31 | LI Y H, RADOVIC L R, LU G Q, et al. A new kinetic model for the NO-carbon reaction[J]. Chemical Engineering Science, 1999, 54: 4125-4136. |
32 | 方晓晴, 范垂钢, 都林, 等. 煤焦直接还原脱除烟道气氮氧化物[J]. 化工学报, 2014, 65(6): 2249-2255. |
FANG Xiaoqing, FAN Chuigang, DU Lin, et al. Reduction of nitric oxide in flue gas by coal char[J]. CIESC Journal, 2014, 65(6): 2249-2255. | |
33 | 周志军, 陈瑶姬, 杨卫娟, 等. 无烟煤焦炭对NO的还原率[J]. 燃烧科学与技术, 2011, 17(6): 477-482. |
ZHOU Zhijun, CHEN Yaoji, YANG Weijuan, et al. Anthracite-char activities to NO reduction[J]. Journal of Combustion Science and Technology, 2011, 17(6): 477-482. | |
34 | YI Baojun, ZHANG Liqi, MAO Zhihui, et al. Effect of the particle size on combustion characteristics of pulverized coal in an O2/CO2 atmosphere[J]. Fuel Processing Technology, 2014, 128: 17-27. |
35 | YIN Yanshan, ZHANG Jun, SHENG Changdong. Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction[J]. Korean Journal of Chemical Engineering, 2009, 26(3): 895-901. |
36 | JONES J M, PATTERSON P M, POURKASHANIAN M, et al. Approaches to modelling heterogeneous char NO formation/destruction during pulverised coal combustion[J]. Carbon, 1999, 37(10): 1545-1552. |
37 | AARNA Indrek, SUUBERG Eric M. A review of the kinetics of the nitric oxide-carbon reaction[J]. Fuel, 1997, 76(6): 475-491. |
38 | SONG Yih H, BEÉR Janos M, SAROFIM Adel F. Reduction of nitric oxide by coal char at temperatures of 1250—1750K[J]. Combustion Science and Technology, 1981, 25: 237-240. |
39 | CHAMBRION Philippe, ORIKASA Hironori, SUZUKI Takeshi, et al. A study of the C—NO reaction by using isotopically labelled C and NO[J]. Fuel, 1997, 76(6): 493-498. |
40 | CHAMBRION Ph, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by Carbon[J]. Energy & Fuels, 1998, 12(2): 416-421. |
41 | Mark THOMAS K. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6): 457-473. |
42 | 陈晓淇, 朱晓, 齐建荟, 等. 焦炭-NO异相还原的密度泛函理论研究进展[J]. 燃料化学学报, 2022, 50(3): 257-267. |
CHEN Xiaoqi, ZHU Xiao, QI Jianhui, et al. Research progress in density functional theory study of char-NO heterogeneous reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 257-267. | |
43 | 张秀霞, 周志军, 周俊虎, 等. 煤粉再燃中煤焦异相还原NO机理的量化研究[J]. 燃烧科学与技术, 2011, 17(2): 155-159. |
ZHANG Xiuxia, ZHOU Zhijun, ZHOU Junhu, et al. A quantum chemistry study of heterogeneous reduction mechanisms of NO on the surface of char during pulverized coal reburning[J]. Journal of Combustion Science and Technology, 2011, 17(2): 155-159. | |
44 | ZHOU Sai, LIU Hu, YU Pengfei, et al. Application of density functional theory on the NO-char heterogeneous reduction mechanism in the presence of CO2 [J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1231-1238. |
45 | KYOTANI Takashi, TOMITA Akira. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. The Journal of Physical Chemistry B, 1999, 103: 3434-3441. |
46 | ZHAO Tong, SONG Wenli, FAN Chuigang, et al. Density functional theory study of the role of an carbon-oxygen single bond group in the NO-char reaction[J]. Energy & Fuels, 2018, 32(7): 7734-7744. |
47 | ZHANG Hai, LIU Jiaxun, WANG Xiaoye, et al. DFT study on the C(N)-NO reaction with isolated and contiguous active sites[J]. Fuel, 2017, 203: 715-724. |
48 | 李竞岌, 张翼, 杨海瑞, 等. 煤中灰成分对CO还原NO反应影响的动力学研究[J]. 煤炭学报, 2016, 41(10): 2448-2453. |
LI Jingji, ZHANG Yi, YANG Hairui, et al. Study of the effect of ash composition in coal on the kinetic parameters of NO reduction reaction by CO[J]. Journal of China Coal Society, 2016, 41(10): 2448-2453. | |
49 | 付梦龙, 张伟, 李逵, 等. 焦炭催化CO-NO反应的动力学实验研究[J]. 钢铁研究学报, 2022, 34(2): 126-132. |
FU Menglong, ZHANG Wei, LI Kui, et al. Experimental study on kinetics of CO-NO reaction catalyzed by coke[J]. Journal of Iron and Steel Research, 2022, 34(2): 126-132. | |
50 | 杨建蒙, 戎旭, 李森, 等. 水泥分解炉高CaO/CO2环境CO还原NO机制[J]. 化学工程, 2019, 47(1): 1-5. |
YANG Jianmeng, RONG Xu, LI Sen, et al. Mechanism of NO reduction by CO in high CaO/CO2 environment of cement precalciner[J]. Chemical Engineering, 2019, 47(1): 1-5. | |
51 | 李森, 方立军, 孙立超, 等. 水泥分解炉中CO还原NO试验研究[J]. 洁净煤技术, 2020, 26(5): 64-69. |
LI Sen, FANG Lijun, SUN Lichao, et al. Experimental study on NO reduction by CO in cement precalciner[J]. Clean Coal Technology, 2020, 26(5): 64-69. | |
52 | 阮丹, 齐砚勇, 李会东. 高温无催化剂条件下CO还原NO数值模拟研究[J]. 硅酸盐通报, 2016, 35(6): 1674-1681. |
RUAN Dan, QI Yanyong, LI Huidong. Numerical simulation research of the reduction of NO by CO at high temperature without catalyst[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(6): 1674-1681. | |
53 | LI Sen, WEI Xiaolin, GUO Xiaofeng. Effect of H2O vapor on NO reduction by CO: Experimental and kinetic modeling study[J]. Energy & Fuels, 2012, 26: 4277-4283. |
54 | 刘栗, 邱朋华, 吴少华. 煤热解挥发分还原NO的反应过程分析[J]. 工程热物理学报, 2010, 31(2): 331-334. |
LIU Li, QIU Penghua, WU Shaohua. Analysis of NO reduction mechanism by volatiles from coal pyrolysis[J]. Journal of Engineering Thermophysics, 2010, 31(2): 331-334. | |
55 | 许紫阳, 岳爽, 王春波, 等. 焦炭催化CO还原NO的反应机理研究[J]. 燃料化学学报, 2020, 48(3): 266-274. |
XU Ziyang, YUE Shuang, WANG Chunbo, et al. Reaction mechanism of NO reduction with CO catalyzed by char[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 266-274. | |
56 | TSUJIMURA Motoki, FURUSAWA Takehiko, KUNII Daizo. Catalytic reduction of nitric oxide by carbon monoxide over calcined limestone[J]. Journal of Chemical Engineering of Japan, 1983, 16: 132-136. |
57 | HANSEN P F B, DAM-JOHANSEN K, JOHNSSON J E, et al. Catalytic reduction of NO and N2O on limestone during sulfur capture under fluidized bed combustion conditions[J]. Chemical Engineering Science, 1992, 47: 2419-2424. |
58 | ACKE Filip, Dan STRÖMBERG. Apparent activation energies for the reduction of NO by CO and H2 over calcined limestone and CaO surfaces[J]. Energy & Fuels, 1998, 12: 945-948. |
59 | ZHAO Zongbin, QIU Jieshan, LI Wen, et al. Influence of mineral matter in coal on decomposition of NO over coal chars and emission of NO during char combustion[J]. Fuel, 2003, 82: 949-957. |
60 | LISSIANSKI Vitali V, MALY Peter M, ZAMANSKY Vladimir M, et al. Utilization of iron additives for advanced control of NO x emissions from stationary combustion sources[J]. Industrial & Engineering Chemistry Research, 2001, 40: 3287-3293. |
61 | 梁秀进, 仲兆平, 金保升, 等. CO对选择性非催化还原脱硝工艺影响的试验研究和模拟[J]. 动力工程, 2009, 29(5): 481-486. |
LIANG Xiujin, ZHONG Zhaoping, JIN Baosheng, et al. Experimental study and simulation on effect of CO on selective non-catalytic reduction denitration process[J]. Chinese Journal of Power Engineering, 2009, 29(5): 481-486. | |
62 | 吕洪坤, 杨卫娟, 周俊虎, 等. CO含量对烟气选择性非催化还原反应的影响[J]. 化工学报, 2009, 60(7): 1773-1780. |
Hongkun LYU, YANG Weijuan, ZHOU Junhu, et al. Effects of CO content on selective non-catalytic reduction of NO x [J]. Journal of Chemical Industry and Engineering (China), 2009, 60(7): 1773-1780. | |
63 | 王林伟, 段钰锋, 姚婷, 等. SNCR脱硝及添加CO对其特性的影响[J]. 热力发电, 2016, 45(5): 41-47. |
WANG Linwei, DUAN Yufeng, YAO Ting, et al. Experimental study on SNCR process of the effect of CO additive on denitration performance[J]. Thermal Power Generation, 2016, 45(5): 41-47. | |
64 | 王俊杰, 房晶瑞, 雷本喜, 等. 水泥窑炉SNCR反应机制及优化运行[J]. 水泥, 2018: 52-55. |
WANG Junjie, FANG Jingrui, LEI Benxi, et al. SNCR reaction mechanism and optimization on cement kiln[J]. Cement, 2018: 52-55. | |
65 | ALZUETA Maria U, Hanne RØJEL, KRISTENSEN Per G, et al. Laboratory study of the CO/NH3/NO/O2 system: Implications for hybrid reburn/SNCR strategies[J]. Energy & Fuels, 1997, 11: 716-723. |
66 | TAYYEB JAVED M, IRFAN Naseem, GIBBS B M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management, 2007, 83: 251-289. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |