化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4636-4648.DOI: 10.16085/j.issn.1000-6613.2022-1932
王晋刚1(), 张剑波1, 唐雪娇2(), 刘金鹏2, 鞠美庭2
收稿日期:
2022-10-18
修回日期:
2023-01-11
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
唐雪娇
作者简介:
王晋刚(1976—),男,博士,副教授,硕士生导师,研究方向为大气污染防治。E-mail:thunk@126.com。
基金资助:
WANG Jingang1(), ZHANG Jianbo1, TANG Xuejiao2(), LIU Jinpeng2, JU Meiting2
Received:
2022-10-18
Revised:
2023-01-11
Online:
2023-09-15
Published:
2023-09-28
Contact:
TANG Xuejiao
摘要:
Cu-SSZ-13催化剂具有优异的CHA骨架结构,在机动车尾气脱硝领域具有很好的应用前景,目前在欧洲已经实现商业应用。为解决尾气中硫氧化物和水热冲击对Cu-SSZ-13骨架和活性位点产生的损害问题,对其进行改性是目前的研究重点。本文归纳了近年来针对Cu-SSZ-13催化活性位点的研究进展以及水热老化、硫中毒导致其失活的机理研究成果;重点论述了针对Cu-SSZ-13催化活性和耐受性能提升的最新改性方法(包括创建新型纳米结构、构建中毒牺牲位点、金属掺杂改性等),以期为提升Cu-SSZ-13催化性能和抗中毒性能研究提供新思路;对Cu-SSZ-13改性技术的未来发展进行展望,提出通过特定金属掺杂和新颖制备方法来控制沸石内的离子种类可实现调控活性位点的创新思路。最后针对性讨论了催化剂改性过程中需要解决的关键问题。
中图分类号:
王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648.
WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648.
1 | XIE Lijuan, LIU Chang, DENG Yun, et al. Promotion effect of Fe species on SO2 resistance of Cu-SSZ-13 catalysts for NO x reduction by NH3 [J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8698-8707. |
2 | HE Hong, WANG Yuesi, MA Qingxin, et al. Mineral dust and NO x promote the conversion of SO2 to sulfate in heavy pollution days[J]. Scientific Reports, 2014, 4: 4172. |
3 | HERNÁNDEZ-SALGADO Gabriela I, LÓPEZ-CURIEL Julio C, FUENTES Gustavo A. A comparative study of the NH3-SCR activity of Cu/SSZ-39 and Cu/SSZ-13 with similar Cu/Al ratios[J]. Topics in Catalysis, 2022, 65(13): 1495-1504. |
4 | KIM Chang Hwan, QI Gongshin, DAHLBERG Kevin, et al. Strontium-doped perovskites rival platinum catalysts for treating NO x in simulated diesel exhaust[J]. Science, 2010, 327(5973): 1624-1627. |
5 | Sunil KUMAR M, ALPHIN M S. Influence of Fe-Cu-SSZ-13 and hybrid Fe-Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NO x [J].Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(5): 2551-2563. |
6 | PAOLUCCI C, KHURANA I, PAREKH A A, et al. Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction[J]. Science, 2017, 357(6354): 898-903. |
7 | DAHLIN Sandra, ENGLUND Johanna, MALM Henrik, et al. Effect of biofuel- and lube oil-originated sulfur and phosphorus on the performance of Cu-SSZ-13 and V2O5-WO3/TiO2 SCR catalysts[J]. Catalysis Today, 2021, 360: 326-339. |
8 | DAYA Rohil, TRANDAL Dylan, DADI Rama Krishna, et al. Kinetics and thermodynamics of ammonia solvation on Z2Cu, ZCuOH and ZCu sites in Cu-SSZ-13—Implications for hydrothermal aging[J]. Applied Catalysis B: Environmental, 2021, 297: 120444. |
9 | MA Lei, CHENG Yisun, CAVATAIO Giovanni, et al. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NO x in diesel exhaust[J]. Chemical Engineering Journal, 2013, 225: 323-330. |
10 | BECHER Johannes, SANCHEZ Dario Ferreira, DORONKIN Dmitry E, et al. Chemical gradients in automotive Cu-SSZ-13 catalysts for NO x removal revealed by operando X-ray spectrotomography[J]. Nature Catalysis, 2020, 4(1): 46-53. |
11 | SHIH Arthur J, GONZÁLEZ Juan M, KHURANA Ishant, et al. Influence of ZCuOH, Z2Cu, and extraframework Cu x O y species in Cu-SSZ-13 on N2O formation during the selective catalytic reduction of NO x with NH3 [J]. ACS Catalysis, 2021, 11(16): 10362-10376. |
12 | XI Yuanzhou, SU Changsheng, OTTINGER Nathan A, et al. Effects of hydrothermal aging on the sulfur poisoning of a Cu-SSZ-13 SCR catalyst[J]. Applied Catalysis B: Environmental, 2021, 284: 119749. |
13 | 吕叶, 胡彤宇, 郭翠梨. SSZ-13分子筛合成及改性研究进展[J]. 化工进展, 2019, 38(4): 1721-1729. |
Ye LYU, HU Tongyu, GUO Cuili. Progress in synthesis and modification of SSZ-13 zeolite[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1721-1729. | |
14 | CHEN Zhiqiang, YE Tianle, QU Hongxia, et al. Progressive regulation of Al sites and Cu distribution to increase hydrothermal stability of hierarchical SSZ-13 for the selective catalytic reduction reaction[J]. Applied Catalysis B: Environmental, 2022, 303: 120867. |
15 | BORDIGA Silvia, REGLI Laura, COCINA Donato, et al. Assessing the acidity of high silica chabazite H-SSZ-13 by FTIR using CO as molecular probe: Comparison with H-SAPO-34[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2779-2784. |
16 | BORDIGA Silvia, REGLI Laura, LAMBERTI Carlo, et al. FTIR adsorption studies of H2O and CH3OH in the isostructural H-SSZ-13 and H-SAPO-34: Formation of H-bonded adducts and protonated clusters[J]. The Journal of Physical Chemistry B, 2005, 109(16): 7724-7732. |
17 | KIM Young Jin, LEE Jun Kyu, MIN Kyung Myung, et al. Hydrothermal stability of CuSSZ13 for reducing NO x by NH3 [J]. Journal of Catalysis, 2014, 311: 447-457. |
18 | BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al. Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials[J]. Chemical Society Reviews, 2015, 44(20): 7371-7405. |
19 | WANG Jihui, ZHAO Huawang, HALLER Gary, et al. Recent advances in the selective catalytic reduction of NO x with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
20 | FAN Chi, MING Shujun, CHEN Zhen, et al. Cold start wetting effect on the catalytic property and hydrothermal stability of a Cu-SSZ-13 catalyst for NH3-SCR[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12304-12312. |
21 | MOHAN Sooraj, DINESHA P, KUMAR Shiva. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: A review[J]. Chemical Engineering Journal, 2020, 384: 123253. |
22 | JIANG Han, GUAN Bin, PENG Xuesong, et al. Effect of sulfur poisoning on the performance and active sites of Cu/SSZ-13 catalyst[J]. Chemical Engineering Science, 2020, 226: 115855. |
23 | SHAN Yulong, SUN Yu, DU Jinpeng, et al. Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR[J]. Applied Catalysis B: Environmental, 2020, 275: 119105. |
24 | WANG Chen, CHEN Zexiang, WANG Jun, et al. Unraveling the nature of sulfur poisoning on Cu/SSZ-13 as a selective reduction catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 38-47. |
25 | DENG Di, DENG Shujun, HE Dandan, et al. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR[J]. Journal of Rare Earths, 2021, 39(8): 969-978. |
26 | MARTINI A, BORFECCHIA E, LOMACHENKO K A, et al. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: A multivariate XAS/FTIR approach to complexity[J]. Chemical Science, 2017, 8(10): 6836-6851. |
27 | SONG James, WANG Yilin, WALTER Eric D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227. |
28 | LI Hui, PAOLUCCI Christopher, KHURANA Ishant, et al. Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13[J]. Chemical Science, 2019, 10(8): 2373-2384. |
29 | BUSCA Guido, LIETTI Luca, RAMIS Gianguido, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NO x by ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental, 1998, 18(1/2): 1-36. |
30 | LI Junhua, CHANG Huazhen, MA Lei, et al. Low-temperature selective catalytic reduction of NO x with NH3 over metal oxide and zeolite catalysts—A review[J]. Catalysis Today, 2011, 175(1): 147-156. |
31 | GREENAWAY Alex G, Ines LEZCANO-GONZALEZ, Miren AGOTE-ARAN, et al. Operando spectroscopic studies of Cu-SSZ-13 for NH3-SCR deNO x investigates the role of NH3 in observed Cu(Ⅱ) reduction at high NO conversions[J]. Topics in Catalysis, 2018, 61(3): 175-182. |
32 | JANSSENS Ton V W, FALSIG Hanne, LUNDEGAARD Lars F, et al. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia[J]. ACS Catalysis, 2015, 5(5): 2832-2845. |
33 | NEGRI Chiara, SIGNORILE Matteo, PORCARO Natale G, et al. Dynamic CuⅡ/CuⅠ speciation in Cu-CHA catalysts by in situ Diffuse Reflectance UV-vis-NIR spectroscopy[J]. Applied Catalysis A: General, 2019, 578: 1-9. |
34 | GAO Feng, János SZANYI. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Applied Catalysis A: General, 2018, 560: 185-194. |
35 | LADSHAW Austin, PIHL Josh. Measurement and modeling of the effects of exhaust composition and hydrothermal aging on the ammonia storage capacity of a commercial Cu-SSZ-13 catalyst[J]. Applied Catalysis B: Environmental, 2022, 303: 120898. |
36 | WANG Di, JANGJOU Yasser, LIU Yong, et al. A comparison of hydrothermal aging effects on NH3-SCR of NO x over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
37 | MALOLA Sami, SVELLE Stian, BLEKEN Francesca Lønstad, et al. Detailed reaction paths for zeolite dealumination and desilication from density functional calculations[J]. Angewandte Chemie International Edition, 2012, 51(3): 652-655. |
38 | LEISTNER Kirsten, KUMAR Ashok, KAMASAMUDRAM Krishna, et al. Mechanistic study of hydrothermally aged Cu/SSZ-13 catalysts for ammonia-SCR[J]. Catalysis Today, 2018, 307: 55-64. |
39 | SHI Lu, YANG Jiaqiang, SHEN Gurong, et al. The influence of adjacent Al atoms on the hydrothermal stability of H-SSZ-13: A first-principles study[J]. Physical Chemistry Chemical Physics, 2020, 22(5): 2930-2937. |
40 | ZHANG Li, WANG Di, LIU Yong, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B: Environmental, 2014, 156/157: 371-377. |
41 | WIJAYANTI Kurnia, XIE Kunpeng, KUMAR Ashok, et al. Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR[J]. Applied Catalysis B: Environmental, 2017, 219: 142-154. |
42 | WANG Aiyong, OLSSON Louise. Insight into the SO2 poisoning mechanism for NO x removal by NH3-SCR over Cu/LTA and Cu/SSZ-13[J]. Chemical Engineering Journal, 2020, 395: 125048. |
43 | JANGJOU Yasser, Quan DO, GU Yuntao, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8(2): 1325-1337. |
44 | HAMMERSHØI Peter S, VENNESTRØM Peter N R, FALSIG Hanne, et al. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2018, 236: 377-383. |
45 | HAMMERSHØI Peter S, JANGJOU Yasser, EPLING William S, et al. Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3 [J]. Applied Catalysis B: Environmental, 2018, 226: 38-45. |
46 | SU Wenkang, LI Zhenguo, ZHANG Yani, et al. Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst[J]. Catalysis Science & Technology, 2017, 7(7): 1523-1528. |
47 | KIM Young Jin, KIM Pyung Soon, KIM Chang Hwan. Deactivation mechanism of Cu/Zeolite SCR catalyst under high-temperature rich operation condition[J]. Applied Catalysis A: General, 2019, 569: 175-180. |
48 | 高深. Cu-SSZ-13分子筛催化剂NH3-SCR性能研究[D]. 上海: 上海交通大学, 2019. |
GAO Shen. Study on performance of Cu-SSZ-13 molecular sieve catalyst for NH3-SCR[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
49 | FICKEL Dustin W, LOBO Raul F. Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD[J]. The Journal of Physical Chemistry C, 2010, 114(3): 1633-1640. |
50 | GAO Feng, WALTER Eric D, KARP Eric M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. Journal of Catalysis, 2013, 300: 20-29. |
51 | PAOLUCCI Christopher, PAREKH Atish A, KHURANA Ishant, et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. Journal of the American Chemical Society, 2016, 138(18): 6028-6048. |
52 | LI Shihan, KONG Haiyu, ZHANG Weiping. A density functional theory modeling on the framework stability of Al-rich Cu-SSZ-13 zeolite modified by metal ions[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5675-5685. |
53 | DINGEMANS G, TERLINDEN N M, VERHEIJEN M A, et al. Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition[J]. Journal of Applied Physics, 2011, 110(9): 093715. |
54 | WU Huibin, ZHANG Bin, LIANG Haojie, et al. Distance effect of Ni-Pt dual sites for active hydrogen transfer in tandem reaction[J]. The Innovation, 2020, 1(2): 100029. |
55 | KIM Hyungjun, LEE Han-Bo-Ram, W-J MAENG. Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J]. Thin Solid Films, 2009, 517(8): 2563-2580. |
56 | ZHANG Tao, SHI Juan, LIU Jian, et al. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH3 [J]. Applied Surface Science, 2016, 375: 186-195. |
57 | TIAN Heyuan, PING Yuan, ZHANG Yibo, et al. Atomic layer deposition of silica to improve the high-temperature hydrothermal stability of Cu-SSZ-13 for NH3 SCR of NO x [J]. Journal of Hazardous Materials, 2021, 416: 126194. |
58 | MA Yue, CHENG Songqi, WU Xiaodong, et al. Improved hydrothermal durability of Cu-SSZ-13 NH3-SCR catalyst by surface Al modification: Affinity and passivation[J]. Journal of Catalysis, 2022, 405: 199-211. |
59 | YUE Ying-Hong, TANG Yi, LIU Yi, et al. Chemical liquid deposition zeolites with controlled pore-opening size and shape-selective separation of isomers[J]. Industrial & Engineering Chemistry Research, 1996, 35(2): 430-433. |
60 | HAN L P, CAI S X, GAO M, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
61 | SALAZAR Mariam, HOFFMANN Stefanie, TILLMANN Lukas, et al. Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3: Precipitates and physical mixtures[J]. Applied Catalysis B: Environmental, 2017, 218: 793-802. |
62 | MARTINOVIC Ferenc, DEORSOLA Fabio Alessandro, ARMANDI Marco, et al. Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation[J]. Applied Catalysis B: Environmental, 2021, 282: 119536. |
63 | YU Rui, ZHAO Zhenchao, HUANG Shengjun, et al. Cu-SSZ-13 zeolite-metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2020, 269: 118825. |
64 | LIU Qingling, FU Zhenchao, MA Lei, et al. MnO x -CeO2 supported on Cu-SSZ-13: A novel SCR catalyst in a wide temperature range[J]. Applied Catalysis A: General, 2017, 547: 146-154. |
65 | SHRESTHA Sachi, HAROLD Michael P, KAMASAMUDRAM Krishna, et al. Selective oxidation of ammonia to nitrogen on bi-functional Cu-SSZ-13 and Pt/Al2O3 monolith catalyst[J]. Catalysis Today, 2016, 267: 130-144. |
66 | USUI Toyohiro, LIU Zhendong, Sayoko IBE, et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catalysis, 2018, 8(10): 9165-9173. |
67 | DU Jinpeng, WANG Jingyi, SHI Xiaoyan, et al. Promoting effect of Mn on in situ synthesized Cu-SSZ-13 for NH3-SCR[J]. Catalysts, 2020, 10(12): 1375. |
68 | WANG Yingjie, SHI Xiaoyan, SHAN Yulong, et al. Hydrothermal stability enhancement of Al-rich Cu-SSZ-13 for NH3 selective catalytic reduction reaction by ion exchange with cerium and samarium[J]. Industrial & Engineering Chemistry Research, 2020, 59(14): 6416-6423. |
69 | ZHAO Zhenchao, YU Rui, SHI Chuan, et al. Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH3-SCR of NO x [J]. Catalysis Science & Technology, 2019, 9(1): 241-251. |
70 | CHANG Huazhen, CHEN Xiaoyin, LI Junhua, et al. Improvement of activity and SO2 tolerance of Sn-modified MnO x –CeO2 catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology, 2013, 47(10): 5294-5301. |
71 | HOU Xinxin, CHEN Hongping, LIANG Yinghua, et al. Pr-doped modified Fe-Mn/TiO2 catalysts with a high activity and SO2 tolerance for NH3-SCR at low-temperature[J].Catalysis Letters, 2020, 150(4): 1041-1048. |
72 | LI Chengxu, XIONG Zhibo, DU Yanping, et al. Promotional effect of tungsten modification on magnetic iron oxide catalyst for selective catalytic reduction of NO with NH3 [J]. Journal of the Energy Institute, 2020, 93(5): 1809-1818. |
73 | REN Limin, ZHU Longfeng, YANG Chengguang, et al. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NO x by NH3 [J]. Chemical Communications, 2011, 47(35): 9789-9791. |
74 | CHEN Zhiqiang, GUO Lei, QU Hongxia, et al. Controllable positions of Cu2+ to enhance low-temperature SCR activity on novel Cu-Ce-La-SSZ-13 by a simple one-pot method[J]. Chemical Communications, 2020, 56(15): 2360-2363. |
75 | WANG Jingang, LIU Jinzhou, TANG Xuejiao, et al. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NO x with NH3 [J]. Chemical Engineering Journal, 2021, 418: 129433. |
76 | ZHAO Yingying, CHOI Byungchul, KIM Daeseok. Effects of Ce and Nb additives on the de-NO x performance of SCR/CDPF system based on Cu-beta zeolite for diesel vehicles[J]. Chemical Engineering Science, 2017, 164: 258-269. |
77 | XU Ruinian, WANG Ziyang, LIU Ning, et al. Understanding Zn functions on hydrothermal stability in a one-pot synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction[J]. ACS Catalysis, 2020, 10(11): 6197-6212. |
78 | CHEN Mengyang, LI Junyan, XUE Wenjuan, et al. Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NO x [J]. Journal of the American Chemical Society, 2022, 144(28): 12816-12824. |
79 | WANG Jingang, ZHANG Jianbo, XING Cheng, et al. Unique responses of Cu-SSZ-13 toward phosphorus: Al atoms on zeolite framework versus varied Cu species[J]. Chemical Engineering Journal, 2023, 455: 140379. |
80 | WANG Jiancheng, PENG Zhaoliang, QIAO Hui, et al. Cerium-stabilized Cu-SSZ-13 catalyst for the catalytic removal of NO x by NH3 [J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1174-1182. |
81 | TAN Wei, LIU Annai, XIE Shaohua, et al. Ce-Si mixed oxide: A high sulfur resistant catalyst in the NH3-SCR reaction through the mechanism-enhanced process[J]. Environmental Science & Technology, 2021, 55(6): 4017-4026. |
82 | KAMBUR Ayca, POZAN Gulin Selda, Ismail BOZ. Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 115-116: 149-158. |
83 | SI Zhichun, WENG Duan, WU Xiaodong, et al. Lattice oxygen mobility and acidity improvements of NiO-CeO2-ZrO2 catalyst by sulfation for NO x reduction by ammonia[J]. Catalysis Today, 2013, 201: 122-130. |
84 | XUE Hongyan, MENG Tao, LIU Fangfang, et al. Enhanced resistance to calcium poisoning on Zr-modified Cu/ZSM-5 catalysts for the selective catalytic reduction of NO with NH3 [J]. RSC Advances, 2019, 9(66): 38477-38485. |
85 | Siva Sankar Reddy Putluru, Riisager Anders, Fehrmann Rasmus. The effect of acidic and redox properties of V2O5/CeO2-ZrO2 catalysts in selective catalytic reduction of NO by NH3 [J]. Catalysis Letters, 2009, 133(3): 370-375. |
86 | SHEN Boxiong, WANG Yinyin, WANG Fumei, et al. The effect of Ce-Zr on NH3-SCR activity over MnO x (0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chemical Engineering Journal, 2014, 236: 171-180. |
87 | ZHAO Qi, CHEN Bingbing, BAI Zhifeng, et al. Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2019, 242: 161-170. |
88 | SALAZAR Mariam, BECKER Ralf, Wolfgang GRÜNERT. Hybrid catalysts—An innovative route to improve catalyst performance in the selective catalytic reduction of NO by NH3 [J]. Applied Catalysis B: Environmental, 2015, 165: 316-327. |
89 | LIU Jinzhou, TANG Xuejiao, XING Cheng, et al. Niobium modification for improving the high-temperature performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3 [J]. Journal of Solid State Chemistry, 2021, 296: 122028. |
90 | 郭蕾.核壳Cu-Ce-La-SSZ-13的制备、表征及催化性能研究[D].南京:南京理工大学,2018. |
GUO Lei. The synthesis, characterization and SCR performance of core-shell structure Cu-Ce-La-SSZ-13[D]. Nanjing: Nanjing University of Science and Technology, 2018. | |
91 | ZHANG Tao, QIU Feng, LI Junhua. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO x with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Applied Catalysis B: Environmental, 2016, 195: 48-58. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[5] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[6] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[7] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[8] | 殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974. |
[9] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[10] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[11] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
[12] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[13] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[14] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
[15] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |