化工进展 ›› 2023, Vol. 42 ›› Issue (8): 3965-3978.DOI: 10.16085/j.issn.1000-6613.2023-0556
常印龙1,2(), 周启民1,2(), 王青月1,2(), 王文俊1,2, 李伯耿1, 刘平伟1,2()
收稿日期:
2023-04-09
修回日期:
2023-05-12
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
王青月,刘平伟
作者简介:
常印龙(2000—),男,硕士研究生,研究方向为聚烯烃的催化裂解。E-mail:ylchang@zju.edu.cn基金资助:
CHANG Yinlong1,2(), ZHOU Qimin1,2(), WANG Qingyue1,2(), WANG Wenjun1,2, LI Bogeng1, LIU Pingwei1,2()
Received:
2023-04-09
Revised:
2023-05-12
Online:
2023-08-15
Published:
2023-09-19
Contact:
WANG Qingyue, LIU Pingwei
摘要:
占全球塑料产量一半以上的聚烯烃,由于其稳定碳氢链结构,极难降解,废弃后带来了严重的“白色”污染和“微塑料”问题。研究废弃聚烯烃的可控化学回收,实现其资源化和升级循环利用,具有重要的意义。本文重点总结了聚烯烃催化裂解的方法、特点及过程机理,包括催化热解、加氢裂化和氢解;梳理了高值裂解产物如芳烃、轻质烯烃、润滑油等的生成机制以及裂解过程中常用的催化剂种类及其催化构效关系;讨论和介绍了裂解反应以及高值产物生成的过程强化手段,包括基于反应器设计的反应过程强化、基于高效分离材料设计的分离过程强化等方面的研究进展。通过高效催化剂的设计及反应和分离过程强化技术的研究,有望实现废弃聚烯烃低温可控裂解及产物的高值化利用。
中图分类号:
常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978.
CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978.
反应 | 催化位点 | 中间体 | 产物分布特点 | 产物异构化程度 | 产物饱和度 | 参考文献 |
---|---|---|---|---|---|---|
催化热解 | 酸性位点 | 碳正离子 | 烷烃、烯烃、环烃、芳烃 (C5-C15) | 高 | 低 | [ |
加氢裂化 | 酸性位点+金属位点 | 碳正离子 | 烷烃 (C3-C30) | 高 | 高 | [ |
氢解 | 金属位点 | 烷基金属 | 烷烃 (C1、C3~C30) | 低 | 高 | [ |
表1 催化热解、加氢裂化、氢解过程与结果对比
反应 | 催化位点 | 中间体 | 产物分布特点 | 产物异构化程度 | 产物饱和度 | 参考文献 |
---|---|---|---|---|---|---|
催化热解 | 酸性位点 | 碳正离子 | 烷烃、烯烃、环烃、芳烃 (C5-C15) | 高 | 低 | [ |
加氢裂化 | 酸性位点+金属位点 | 碳正离子 | 烷烃 (C3-C30) | 高 | 高 | [ |
氢解 | 金属位点 | 烷基金属 | 烷烃 (C1、C3~C30) | 低 | 高 | [ |
塑料 | 反应器类型 | 催化剂 | 塑料/催化剂(质量比) | 温度/℃ | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|
轻质烯烃 | 芳烃 | C5~C12(不含芳烃) | C12+ | ||||||
HDPE | 锥形喷口床 | HZSM-5 | — | 500 | 60 | 10(单环) | 15(C5~C11) | 1 | [ |
HDPE | 锥形喷口床 | HZSM-5 | 30 | 500 | 58 | — | — | — | [ |
HDPE | 间歇反应器 | HUSY | 10 | 550 | 10.6 | 18 | — | — | [ |
HDPE | 微波辅助热解 | HZSM-5 | 5 | 620 | — | 22 | 35.9 | 13 | [ |
LDPE | 微波辅助热解 | HZSM-5 | 6.7 | 450 | — | 21.4 | — | — | [ |
LDPE | 固定床 | B-HZSM-5 | 0.025 | 600 | 65.5 | 10.2 | 16.5(C5~C11) | 5.5 | [ |
PP | 固定床 | FCC | 4 | 550 | — | 23.1 | 34.6(C8~C12) | 14 | [ |
PP | 流化床 | HUSY | 0.4 | 430 | — | 1.12(BTX) | 54.7(C5~C9) | — | [ |
PP+NS① | 固定床 | HZSM-5 | 1 | 800 | — | 12.2 | — | — | [ |
PS② | 间歇反应器 | 天然沸石 | 10 | 450 | — | 34.4 | — | — | [ |
PE+PP | 流化床 | Ga-ZSM-5 | — | 550 | 15.9(C2~C3) | 44 | — | — | [ |
表2 聚烯烃在不同反应条件下获得芳烃、轻质烯烃等产品分布
塑料 | 反应器类型 | 催化剂 | 塑料/催化剂(质量比) | 温度/℃ | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|
轻质烯烃 | 芳烃 | C5~C12(不含芳烃) | C12+ | ||||||
HDPE | 锥形喷口床 | HZSM-5 | — | 500 | 60 | 10(单环) | 15(C5~C11) | 1 | [ |
HDPE | 锥形喷口床 | HZSM-5 | 30 | 500 | 58 | — | — | — | [ |
HDPE | 间歇反应器 | HUSY | 10 | 550 | 10.6 | 18 | — | — | [ |
HDPE | 微波辅助热解 | HZSM-5 | 5 | 620 | — | 22 | 35.9 | 13 | [ |
LDPE | 微波辅助热解 | HZSM-5 | 6.7 | 450 | — | 21.4 | — | — | [ |
LDPE | 固定床 | B-HZSM-5 | 0.025 | 600 | 65.5 | 10.2 | 16.5(C5~C11) | 5.5 | [ |
PP | 固定床 | FCC | 4 | 550 | — | 23.1 | 34.6(C8~C12) | 14 | [ |
PP | 流化床 | HUSY | 0.4 | 430 | — | 1.12(BTX) | 54.7(C5~C9) | — | [ |
PP+NS① | 固定床 | HZSM-5 | 1 | 800 | — | 12.2 | — | — | [ |
PS② | 间歇反应器 | 天然沸石 | 10 | 450 | — | 34.4 | — | — | [ |
PE+PP | 流化床 | Ga-ZSM-5 | — | 550 | 15.9(C2~C3) | 44 | — | — | [ |
塑料 | 催化剂 | 温度/℃ | 氢气压力/MPa | 时间/h | 塑料/催化剂 (质量比) | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
C1~C4 | 汽油 | 柴油 | 润滑油 | |||||||
HDPE | Pt/STO | 300 | 1.2 | 96 | 5 | — | — | — | 42 | [ |
HDPE | Ru/C | 220 | 2 | 1 | 2.4 | — | — | — | 31.6 | [ |
LDPE | Ru/CeO2 | 240 | 6 | 8 | 34 | 9.7 | 22 | 62 | — | [ |
LDPE | Pt/WO3/ZrO2+Hβ | 250 | 3 | 2 | 10 | 4 | 73 | 20 | — | [ |
LDPE | Pt/W/β | 250 | 3 | 1 | 40 | 30.3 | 63.6 | — | — | [ |
PP | Pt/W/β | 250 | 3 | 1 | 40 | 47.1 | 50.8 | — | — | [ |
LLDPE① | Pt/W/β | 250 | 3 | 1 | 40 | 31.8 | 65 | — | — | [ |
LLDPE | Ru/Nb2O5 | 300 | 3 | 2 | 10 | — | 47 | 32 | — | [ |
PE+PP(热解蜡) | Ni/Hβ+ZSM-5 | 300 | 2 | 2 | 18.8 | 30.2 | 33.5 | 23.5 | 19 | [ |
表3 聚烯烃在不同反应条件下获得汽油、柴油、润滑油等液体产品分布
塑料 | 催化剂 | 温度/℃ | 氢气压力/MPa | 时间/h | 塑料/催化剂 (质量比) | 产物(质量分数)/% | 参考文献 | |||
---|---|---|---|---|---|---|---|---|---|---|
C1~C4 | 汽油 | 柴油 | 润滑油 | |||||||
HDPE | Pt/STO | 300 | 1.2 | 96 | 5 | — | — | — | 42 | [ |
HDPE | Ru/C | 220 | 2 | 1 | 2.4 | — | — | — | 31.6 | [ |
LDPE | Ru/CeO2 | 240 | 6 | 8 | 34 | 9.7 | 22 | 62 | — | [ |
LDPE | Pt/WO3/ZrO2+Hβ | 250 | 3 | 2 | 10 | 4 | 73 | 20 | — | [ |
LDPE | Pt/W/β | 250 | 3 | 1 | 40 | 30.3 | 63.6 | — | — | [ |
PP | Pt/W/β | 250 | 3 | 1 | 40 | 47.1 | 50.8 | — | — | [ |
LLDPE① | Pt/W/β | 250 | 3 | 1 | 40 | 31.8 | 65 | — | — | [ |
LLDPE | Ru/Nb2O5 | 300 | 3 | 2 | 10 | — | 47 | 32 | — | [ |
PE+PP(热解蜡) | Ni/Hβ+ZSM-5 | 300 | 2 | 2 | 18.8 | 30.2 | 33.5 | 23.5 | 19 | [ |
1 | RAFEY Abdul, Kunwar PAL, BOHRE Ashish, et al. A state-of-the-art review on the technological advancements for the sustainable management of plastic waste in consort with the generation of energy and value-added chemicals[J]. Catalysts, 2023, 13(2): 420. |
2 | KORLEY LaShanda T J, EPPS Thomas H, HELMS Brett A, et al. Toward polymer upcycling-adding value and tackling circularity[J]. Science, 2021, 373(6550): 66-69. |
3 | HOU Qidong, ZHEN Meinan, QIAN Hengli, et al. Upcycling and catalytic degradation of plastic wastes[J]. Cell Reports Physical Science, 2021, 2(8): 100514. |
4 | JIANG Jie, SHI Ke, ZHANG Xiangnan, et al. From plastic waste to wealth using chemical recycling: A review[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106867. |
5 | OJHA Deepak K, VINU Ravikrishnan. Copyrolysis of lignocellulosic biomass with waste plastics for resource recovery[M]//Waste Biorefinery. Amsterdam: Elsevier, 2018: 349-391. |
6 | DEMETRIOUS A, CROSSIN E. Life cycle assessment of paper and plastic packaging waste in landfill, incineration, and gasification-pyrolysis[J]. Journal of Material Cycles and Waste Management, 2019, 21(4): 850-860. |
7 | WANG Zhiwei, BURRA Kiran G, LEI Tingzhou, et al. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals—A review[J]. Progress in Energy and Combustion Science, 2021, 84: 100899. |
8 | YANG Zhan, Fan LÜ, ZHANG Hua, et al. Is incineration the terminator of plastics and microplastics?[J]. Journal of Hazardous Materials, 2021, 401: 123429. |
9 | CHEN Huan, WAN Kun, ZHANG Yayun, et al. Waste to wealth: Chemical recycling and chemical upcycling of waste plastics for a great future[J]. ChemSusChem, 2021, 14(19): 4123-4136. |
10 | QURESHI Muhammad Saad, OASMAA Anja, PIHKOLA Hanna, et al. Pyrolysis of plastic waste: Opportunities and challenges[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104804. |
11 | BUTLER E, DEVLIN G, MCDONNELL K. Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research[J]. Waste and Biomass Valorization, 2011, 2(3): 227-255. |
12 | ZHANG Yutao, FU Zegang, WANG Wei, et al. Kinetics, product evolution, and mechanism for the pyrolysis of typical plastic waste[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 91-103. |
13 | LOPEZ Gartzen, ARTETXE Maite, AMUTIO Maider, et al. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 346-368. |
14 | KOTS Pavel A, VANCE Brandon C, VLACHOS Dionisios G. Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: A comparative study[J]. Reaction Chemistry & Engineering, 2022, 7(1): 41-54. |
15 | MIANDAD R, BARAKAT M A, ABURIAZAIZA Asad S, et al. Catalytic pyrolysis of plastic waste: A review[J]. Process Safety and Environmental Protection, 2016, 102: 822-838. |
16 | NAKAJI Yosuke, TAMURA Masazumi, MIYAOKA Shuhei, et al. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes[J]. Applied Catalysis B: Environmental, 2021, 285: 119805. |
17 | WEITKAMP Jens. Catalytic hydrocracking—Mechanisms and versatility of the process[J]. ChemCatChem, 2012, 4(3): 292-306. |
18 | CHU Mingyu, TU Weilin, YANG Shuangqiao, et al. Sustainable chemical upcycling of waste polyolefins by heterogeneous catalysis[J]. SusMat, 2022, 2(2): 161-185. |
19 | SERRANO D P, AGUADO J, ESCOLA J M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals[J]. ACS Catalysis, 2012, 2(9): 1924-1941. |
20 | LEE Wei-Tse, VAN MUYDEN Antoine, BOBBINK Felix D, et al. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts[J]. Nature Communications, 2022, 13: 4850. |
21 | TEDSTONE Aleksander A, JUMAH Abdulrahman BIN, ASUQUO Edidiong, et al. Transition metal chalcogenide bifunctional catalysts for chemical recycling by plastic hydrocracking: A single-source precursor approach[J]. Royal Society Open Science, 2022, 9(3): 211353. |
22 | CHEN Linxiao, ZHU Yifeng, MEYER Laura C, et al. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes[J]. Reaction Chemistry & Engineering, 2022, 7(4): 844-854. |
23 | Siauw H NG, SEOUD Hesham, STANCIULESCU Maria, et al. Conversion of polyethylene to transportation fuels through pyrolysis and catalytic cracking[J]. Energy & Fuels, 1995, 9(5): 735-742. |
24 | AGUADO J, SERRANO D P, San MIGUEL G, et al. Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 153-161. |
25 | CORMA A, ORCHILLÉS A V. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Materials, 2000, 35/36: 21-30. |
26 | CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
27 | FAN Liangliang, LIU Lei, XIAO Zhiguo, et al. Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5[J]. Energy, 2021, 228: 120612. |
28 | FAN Liangliang, SU Zheyang, WU Jiabo, et al. Integrating continuous-stirred microwave pyrolysis with ex-situ catalytic upgrading for linear low-density polyethylene conversion: Effects of parameter conditions[J]. Journal of Analytical and Applied Pyrolysis, 2021, 157: 105213. |
29 | PENG Peng, GAO Xionghou, YAN Zifeng, et al. Diffusion and catalyst efficiency in hierarchical zeolite catalysts[J]. National Science Review, 2020, 7(11): 1726-1742. |
30 | AGUADO J, SERRANO D P, SOTELO J L, et al. Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and nanosized HZSM-5[J]. Industrial & Engineering Chemistry Research, 2001, 40(24): 5696-5704. |
31 | DAHL Ivar M, STEIN Kolboe. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3): 329-336. |
32 | DONG Zhongwen, CHEN Wenjun, XU Keqing, et al. Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: A critical review[J]. ACS Catalysis, 2022, 12(24): 14882-14901. |
33 | MARCILLA A, BELTRÁN M I, NAVARRO R. Evolution of products generated during the dynamic pyrolysis of LDPE and HDPE over HZSM5[J]. Energy & Fuels, 2008, 22(5): 2917-2924. |
34 | DORADO Christina, MULLEN Charles A, BOATENG Akwasi A. Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J]. Applied Catalysis B: Environmental, 2015, 162: 338-345. |
35 | ESCHENBACHER Andreas, VARGHESE Robin John, ABBAS-ABADI Mehrdad Seifali, et al. Maximizing light olefins and aromatics as high value base chemicals via single step catalytic conversion of plastic waste[J]. Chemical Engineering Journal, 2022, 428: 132087. |
36 | ELORDI Gorka, OLAZAR Martin, LOPEZ Gartzen, et al. Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6061-6070. |
37 | ELORDI G, OLAZAR M, LOPEZ G, et al. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 345-351. |
38 | MARCILLA A, BELTRÁN M I, NAVARRO R. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions[J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 78-86. |
39 | ZHOU Nan, DAI Leilei, LV Yuancai, et al. Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production[J]. Chemical Engineering Journal, 2021, 418: 129412. |
40 | CHEN Zhaohui, MONZAVI Mohammad, LATIFI Mohammad, et al. Microwave-responsive SiC[email protected]core-shell structured catalyst for catalytic pyrolysis of plastics[J]. Environmental Pollution, 2022, 307: 119573. |
41 | ESCHENBACHER Andreas, GOODARZI Farnoosh, VARGHESE Robin John, et al. Boron-modified mesoporous ZSM-5 for the conversion of pyrolysis vapors from LDPE and mixed polyolefins: Maximizing the C2-C4 olefin yield with minimal carbon footprint[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14618-14630. |
42 | SAEAUNG Koranit, PHUSUNTI Neeranuch, PHETWAROTAI Worasak, et al. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals[J]. Waste Management, 2021, 127: 101-111. |
43 | LIN Y-H, YEN H-Y. Fluidised bed pyrolysis of polypropylene over cracking catalysts for producing hydrocarbons[J]. Polymer Degradation and Stability, 2005, 89(1): 101-108. |
44 | QI Pengyu, CHANG Guozhang, WANG Hongchao, et al. Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 178-185. |
45 | MIANDAD R, BARAKAT M A, REHAN M, et al. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts[J]. Waste Management, 2017, 69: 66-78. |
46 | NISHINO Junya, ITOH Masaaki, FUJIYOSHI Hironobu, et al. Catalytic degradation of plastic waste into petrochemicals using Ga-ZSM-5[J]. Fuel, 2008, 87(17/18): 3681-3686. |
47 | ARTETXE Maite, LOPEZ Gartzen, AMUTIO Maider, et al. Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10637-10645. |
48 | SANTOS Bianca P S, ALMEIDA Débora D, MARQUES Maria de Fátima V, et al. Degradation of polypropylene and polyethylene wastes over HZSM-5 and USY zeolites[J]. Catalysis Letters, 2019, 149(3): 798-812. |
49 | AGUADO J, SERRANO D P, ESCOLA J M, et al. Catalytic conversion of polyolefins into fuels over zeolite beta[J]. Polymer Degradation and Stability, 2000, 69(1): 11-16. |
50 | SIVAGAMI Krishnasamy, KUMAR Keshav V, TAMIZHDURAI Perumal, et al. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor[J]. RSC Advances, 2022, 12(13): 7612-7620. |
51 | FURDA L V, SMALCHENKO D E, LEBEDEVA O E. Catalytic conversion of polyolefins in the presence of MCM-41 type mesoporous materials[J]. Petroleum Chemistry, 2022, 62(3): 310-315. |
52 | WEI Dr Ta-Tung, LIN Prof Yeuh-Hui. Fast pyroylysis of polyolefin waste over cracking catalysts for producing hydrocarbon fuels using a fluidized-bed reactor[J]. International Journal of Chemical Reactor Engineering, 2012, 10(1): 1052-1053. |
53 | DAI Leilei, ZHOU Nan, LV Yuancai, et al. Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha[J]. Energy Conversion and Management, 2021, 245: 114578. |
54 | SOCCI Joseph, OSATIASHTIANI Amin, KYRIAKOU Georgios, et al. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts[J]. Applied Catalysis A: General, 2019, 570: 218-227. |
55 | DOS SANTOS LUIZ Denise, SARON Clodoaldo. Catalytic effect of natural clays on properties and chemical structure of recycled polyethylene[J]. Journal of Material Cycles and Waste Management, 2022, 24(6): 2545-2554. |
56 | LÓPEZ A, DE MARCO I, CABALLERO B M, et al. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud[J]. Applied Catalysis B: Environmental, 2011, 104(3/4): 211-219. |
57 | ZHANG Yayun, DUAN Dengle, LEI Hanwu, et al. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons[J]. Applied Energy, 2019, 251: 113337. |
58 | KUMAR Sachin, PANDA Achyut K, SINGH R K. A review on tertiary recycling of high-density polyethylene to fuel[J]. Resources, Conservation and Recycling, 2011, 55(11): 893-910. |
59 | WU Shuo, HAN Yu, ZOU Yongcun, et al. Synthesis of heteroatom substituted SBA-15 by the “pH-adjusting” method[J]. Chemistry of Materials, 2004, 16(3): 486-492. |
60 | YU Hongchang, LI Fuwei, HE Wen, et al. Synthesis of micro-mesoporous ZSM-5 zeolite with microcrystalline cellulose as co-template and catalytic cracking of polyolefin plastics[J]. RSC Advances, 2020, 10(37): 22126-22136. |
61 | KOKURYO S, MIYAKE K, UCHIDA Y, et al. Defect engineering to boost catalytic activity of Beta zeolite on low-density polyethylene cracking[J]. Materials Today Sustainability, 2022, 17: 100098. |
62 | SUN Peng, GAO Guang, ZHAO Zelun, et al. Acidity-regulation for enhancing the stability of Ni/HZSM-5 catalyst for valeric biofuel production[J]. Applied Catalysis B: Environmental, 2016, 189: 19-25. |
63 | PAYSEPAR Hooman, RAO Kasanneni Tirumala Venkateswara, YUAN Zhongshun, et al. Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2018, 563: 154-162. |
64 | YUAN Haoran, LI Chengyu, SHAN Rui, et al. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis[J]. Fuel Processing Technology, 2022, 238: 107531. |
65 | Pedro CASTAÑO, ELORDI Gorka, OLAZAR Martin, et al. Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 91-100. |
66 | BONILLA Adriana, BAUDOUIN David, Javier PÉREZ-RAMÍREZ. Desilication of ferrierite zeolite for porosity generation and improved effectiveness in polyethylene pyrolysis[J]. Journal of Catalysis, 2009, 265(2): 170-180. |
67 | Abel MINGORANCE-BAENA, Sandra SILES-QUESADA, TARACH Karolina, et al. Improved catalytic technology for waste plastic processing: Toward novel remediation and emission control measures[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 129-133. |
68 | SHI Jing, ZHAO Guoliang, TENG Jiawei, et al. Morphology control of ZSM-5 zeolites and their application in Cracking reaction of C4 olefin[J]. Inorganic Chemistry Frontiers, 2018, 5(11): 2734-2738. |
69 | DUAN Jindi, CHEN Wei, WANG Chengtao, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion[J]. Journal of the American Chemical Society, 2022, 144(31): 14269-14277. |
70 | KANE Alexander Q, ESPER Alec M, SEARLES Keith, et al. Probing β-alkyl elimination and selectivity in polyolefin hydrogenolysis through DFT[J]. Catalysis Science & Technology, 2021, 11(18): 6155-6162. |
71 | WANG Cong, XIE Tianjun, KOTS Pavel A, et al. Polyethylene hydrogenolysis at mild conditions over ruthenium on tungstated zirconia[J]. JACS Au, 2021, 1(9): 1422-1434. |
72 | VANCE Brandon C, KOTS Pavel A, WANG Cong, et al. Ni/SiO2 catalysts for polyolefin deconstruction via the divergent hydrogenolysis mechanism[J]. Applied Catalysis B: Environmental, 2023, 322: 122138. |
73 | HACKLER Ryan A, KIMAYA Vyavhare, KENNEDY Robert M, et al. Synthetic lubricants derived from plastic waste and their tribological performance[J]. ChemSusChem, 2021, 14(19): 4181-4189. |
74 | CELIK Gokhan, KENNEDY Robert M, HACKLER Ryan A, et al. Upcycling single-use polyethylene into high-quality liquid products[J]. ACS Central Science, 2019, 5(11): 1795-1803. |
75 | JIA Chuhua, XIE Shaoqu, ZHANG Wanli, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst[J]. Chem Catalysis, 2021, 1(2): 437-455. |
76 | LIU Sibao, KOTS Pavel A, VANCE Brandon C, et al. Plastic waste to fuels by hydrocracking at mild conditions[J]. Science Advances, 2021, 7(17): eabf8283. |
77 | SUN Mengya, ZHU Lijun, LIU Wang, et al. Efficient upgrading of polyolefin plastics into C5-C12 gasoline alkanes over a Pt/W/Beta catalyst[J]. Sustainable Energy & Fuels, 2022, 6(2): 271-275. |
78 | DU Bowen, CHEN Xiao, LING Yu, et al. Hydrogenolysis-isomerization of waste polyolefin plastics to multibranched liquid alkanes[J]. ChemSusChem, 2023, 16(3): e202202035. |
79 | DING F, LUO C, ZHANG H, et al. Hydrocracking of polyolefin thermal cracking waxes over Ni-loaded molecular sieve catalysts[J]. Petroleum Science and Technology, 2015, 33(21/22): 1846-1852. |
80 | ZHANG Fan, ZENG Manhao, YAPPERT Ryan D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
81 | TENNAKOON Akalanka, WU Xun, PATERSON Alexander L, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11): 893-901. |
82 | JING Yaxuan, WANG Yanqin, FURUKAWA Shinya, et al. Towards the circular economy: Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J]. Angewandte Chemie International Edition, 2021, 60(10): 5527-5535. |
83 | CHOI Il-Ho, LEE Hye-Jin, RHIM Geun-Bae, et al. Catalytic hydrocracking of heavy wax from pyrolysis of plastic wastes using Pd/Hβ for naphtha-ranged hydrocarbon production[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105424. |
84 | ZICHITTELLA Guido, EBRAHIM Amani M, ZHU Jie, et al. Hydrogenolysis of polyethylene and polypropylene into propane over cobalt-based catalysts[J]. JACS Au, 2022, 2(10): 2259-2268. |
85 | TAMURA Masazumi, MIYAOKA Shuhei, NAKAJI Yosuke, et al. Structure-activity relationship in hydrogenolysis of polyolefins over Ru/support catalysts[J]. Applied Catalysis B: Environmental, 2022, 318: 121870. |
86 | MIRENA Juan I, THYBAUT Joris W, MARIN Guy B, et al. Impact of the spatial distribution of active material on bifunctional hydrocracking[J]. Industrial & Engineering Chemistry Research, 2021, 60(18): 6357-6378. |
87 | ELLIS Lucas D, RORRER Nicholas A, SULLIVAN Kevin P, et al. Chemical and biological catalysis for plastics recycling and upcycling[J]. Nature Catalysis, 2021, 4(7): 539-556. |
88 | ONWUDILI Jude A, INSURA Nagi, WILLIAMS Paul T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 293-303. |
89 | ANUAR SHARUDDIN Shafferina Dayana, ABNISA Faisal, WAN DAUD Wan Mohd Ashri, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326. |
90 | DUTTA Neelanjan, MONDAL Pradip, GUPTA Anirban. Optimization of process parameters using response surface methodology for maximum liquid yield during thermal pyrolysis of blend of virgin and waste high-density polyethylene[J]. Journal of Material Cycles and Waste Management, 2022, 24(3): 1182-1193. |
91 | PREMALATHA N, PRATHIBA R, MIRANDA Michael Angelo, et al. Pyrolysis of polypropylene waste using sulfonated carbon catalyst synthesized from sugarcane bagasse[J]. Journal of Material Cycles and Waste Management, 2021, 23(3): 1002-1014. |
92 | XUE Yuan, JOHNSTON Patrick, BAI Xianglan. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441-451. |
93 | SHARRATT P N, LIN Y-h, GARFORTH A A, et al. Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5118-5124. |
94 | WONG S L, NGADI N, ABDULLAH T A T, et al. Current state and future prospects of plastic waste as source of fuel: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 1167-1180. |
95 | KASAR Pamreishang, SHARMA D K, AHMARUZZAMAN M. Thermal and catalytic decomposition of waste plastics and its co-processing with petroleum residue through pyrolysis process[J]. Journal of Cleaner Production, 2020, 265: 121639. |
96 | ELORDI G, OLAZAR M, AGUADO R, et al. Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 450-455. |
97 | OROZCO Santiago, ALVAREZ Jon, LOPEZ Gartzen, et al. Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions[J]. Energy Conversion and Management, 2021, 229: 113768. |
98 | OROZCO Santiago, LOPEZ Gartzen, SUAREZ Mayra Alejandra, et al. Oxidative fast pyrolysis of high-density polyethylene on a spent fluid catalytic cracking catalyst in a fountain confined conical spouted bed reactor[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(48): 15791-15801. |
99 | LAM Su Shiung, CHASE Howard A. A review on waste to energy processes using microwave pyrolysis[J]. Energies, 2012, 5(10): 4209-4232. |
100 | KASSARGY Chantal, AWAD Sary, BURNENS Gaetan, et al. Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 31-37. |
101 | 王宇馨, 兰天昊, 王小青, 等. 低碳烯烃高效分离新型多孔材料的研究进展[J]. 化学通报, 2021, 84(10): 995-1007. |
WANG Yuxin, LAN Tianhao, WANG Xiaoqing, et al. Research progress in new porous materials for efficient light hydrocarbons separation[J]. Chemistry, 2021, 84(10): 995-1007. | |
102 | XIAO Fengshou. Decorated zeolites for chemoselective alkyne/olefin separations[J]. Science China Chemistry, 2020, 63(9): 1177-1178. |
103 | 尹新旺, 张继军, 冯世超, 等. 离子液体在低碳烯烃/烷烃分离中的应用研究进展[J]. 化工进展, 2019, 38(9): 3936-3946. |
YIN Xinwang, ZHANG Jjijun, FENG Shichao, et al. Application of ionic liquids in olefin/paraffin separation[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3936-3946. | |
104 | FAIZ Rami, LI Kang. Polymeric membranes for light olefin/paraffin separation[J]. Desalination, 2012, 287: 82-97. |
105 | WU Yaqi, WECKHUYSEN Bert M. Separation and purification of hydrocarbons with porous materials[J]. Angewandte Chemie International Edition, 2021, 60(35): 18930-18949. |
106 | RUTHVEN Douglas M. Past progress and future challenges in adsorption research[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2127-2131. |
107 | GEHRE Mascha, GUO Zhiyong, ROTHENBERG Gadi, et al. Sustainable separations of C4-hydrocarbons by using microporous materials[J]. ChemSusChem, 2017, 10(20): 3947-3963. |
108 | MUKHERJEE Soumya, SENSHARMA Debobroto, QAZVINI Omid T, et al. Advances in adsorptive separation of benzene and cyclohexane by metal-organic framework adsorbents[J]. Coordination Chemistry Reviews, 2021, 437: 213852. |
109 | ZHANG Shuhao, TAYLOR Mercedes K, JIANG Lingchang, et al. Frontispiece: Light hydrocarbon separations using porous organic framework materials[J]. Chemistry-A European Journal, 2020, 26(15): 3205-3221. |
110 | 倪清, 来锦波, 彭东岳, 等. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
NI Qing, LAI Jinbo, PENG Dongyue, et al. Progress in extraction separation of hydrocarbons by ionic liquids[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-27. | |
111 | CHAKRABORTY M, DOBARIA D, PARIKH P A. The separation of aromatic hydrocarbons through a supported ionic liquid membrane[J]. Petroleum Science and Technology, 2012, 30(23): 2504-2516. |
112 | Wytze MEINDERSMA G, PODT Anita J G, KLAREN Marianne B, et al. Separation of aromatic and aliphatic hydrocarbons with ionic liquids[J]. Chemical Engineering Communications, 2006, 193(11): 1384-1396. |
113 | MOURA Leila, SANTINI Catherine C, COSTA GOMES Margarida F. Gaseous hydrocarbon separations using functionalized ionic liquids[J]. Oil & Gas Science and Technology-Revue D’IFP Energies Nouvelles, 2016, 71(2): 23. |
114 | IYER Gaurav M, LIU Lu, ZHANG Chen. Hydrocarbon separations by glassy polymer membranes[J]. Journal of Polymer Science, 2020, 58(18): 2482-2517. |
115 | SEMENOVA S I. Polymer membranes for hydrocarbon separation and removal[J]. Journal of Membrane Science, 2004, 231(1/2): 189-207. |
[1] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[2] | 刘美佳, 王刚, 张忠东, 何盛宝, 高金森. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199. |
[3] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[4] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[5] | 杨超, 矫庆泽, 冯彩虹, 赵芸. 废旧轮胎催化裂解研究进展[J]. 化工进展, 2022, 41(7): 3877-3889. |
[6] | 石一慈, 潘艳秋, 王成宇, 范嘉禾, 俞路. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
[7] | 孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255. |
[8] | 宋飞, 王君妍, 何林, 隋红, 李鑫钢. 表面活性剂强化重质油矿溶剂萃取残渣中残留溶剂鼓泡分离[J]. 化工进展, 2022, 41(4): 2007-2014. |
[9] | 唐思扬, 李星宇, 鲁厚芳, 钟山, 梁斌. 低能耗化学吸收碳捕集技术展望[J]. 化工进展, 2022, 41(3): 1102-1106. |
[10] | 刘庆丰, 廖亚龙, 吴越, 郗家俊, 嵇广雄. 黄铜矿强化浸出研究进展[J]. 化工进展, 2022, 41(11): 6099-6110. |
[11] | 王志鸿, 朱华威, 余海峰, 江浩, 李春忠. 共沉淀法制备高镍氧化物正极材料前体研究进展[J]. 化工进展, 2021, 40(9): 5097-5106. |
[12] | 王昱翰, 沈冲, 苏远海. 光化学微反应技术的基础及研究进展[J]. 化工进展, 2021, 40(9): 4749-4761. |
[13] | 王晓达, 陈宇, 王清莲, 黄智贤, 杨臣, 王红星, 邱挺. 醚化反应精馏研究进展[J]. 化工进展, 2021, 40(4): 1797-1811. |
[14] | 刘东阳, 白宇恩, 张霖宙, 张宇豪, 赵亮, 高金森, 徐春明. 分子尺度反应动力学模型构建在催化裂化/裂解过程中的应用进展[J]. 化工进展, 2021, 40(4): 2082-2091. |
[15] | 马浩, 蔡滔, 黄正宇, 陈利利, 乔艳辉, 滕俊江, 纪红兵. 金属基离子液体催化生物质转化研究进展[J]. 化工进展, 2021, 40(2): 800-812. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |