化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3611-3622.DOI: 10.16085/j.issn.1000-6613.2022-1732
收稿日期:
2022-09-16
修回日期:
2022-10-13
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
李吉焱
作者简介:
李吉焱(1986—),女,副教授,硕士生导师,研究方向为太阳能驱动界面蒸发。E-mail:lijiyan@lut.edu.cn。
基金资助:
LI Jiyan(), JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi
Received:
2022-09-16
Revised:
2022-10-13
Online:
2023-07-15
Published:
2023-08-14
Contact:
LI Jiyan
摘要:
太阳能驱动界面蒸发技术(SDIE)依靠光热材料和蒸发器进行海水淡化,因光热转换效率高、环境友好、制造工艺简单和材料丰富等优点引起了学者们的广泛关注。但在海水淡化过程中,光热材料和蒸发器表面盐结晶的积累会直接影响太阳能界面蒸发效率,解决光热材料和蒸发器表面盐结晶问题是SDIE中重要的一步。本文简述了近年来耐盐型光热材料及蒸发器的设计理念与研究现状,阐述了不同耐盐设计的优点和局限性,梳理了其耐盐机制和性能,分析表明通过调控光热材料的孔结构、亲-疏水性、离子基团等方法可以增强光热材料的耐盐性,通过调控盐溶液的浓度和盐的结晶位置等可设计多种耐盐型蒸发器,讨论了目前在SDIE中解决盐结晶问题存在的共性问题并提出未来的研究挑战,以推进未来SDIE的研究与发展。
中图分类号:
李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622.
LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622.
序号 | 光热材料 | 耐盐 方法 | 作用机制 | 蒸发速率 /kg·m-2·h-1 | 耐盐性能 | 参考 文献 |
---|---|---|---|---|---|---|
1 | 碳纤维包覆藜麦纤维素纳米片 | 1 | 直接冲洗盐晶体或自 清洁 | 3.2 | 3.5%和7.0% NaCl溶液,12h,表面的盐分别在熄灯7h和12h后自动溶解 | [ |
1 | ||||||
2 | 碳纳米管耦合棉织物 | 1.59 | 17.5% NaCl溶液,8h,洗涤后,表面非常干净,对织物无不利影响 | [ | ||
1 | ||||||
3 | 半球形双层水凝胶 | 2.03 | 25% NaCl溶液,10h,熄灯1h后盐颗粒完全溶解 | [ | ||
4 | 天然木材 | 2 | 通过设计蒸发器的结构来增强盐分的逆向扩散,盐分因浓度差异自动扩散回散装水 | 1.46 (3.6%NaCl) | 20% NaCl溶液,6h,无盐沉积,100h的连续试验期间,蒸发效率为75%;15% NaCl溶液,6h(1~5sun),未有盐积累 | [ |
5 | 聚丙烯酰胺/MnO2水凝胶 | 2 | 3.297 | 25%盐水,12h,只出现微小的盐颗粒,2.393kg/(m2·h);0.5g NaCl粉末90min后完全溶解 | [ | |
6 | N,S-掺杂多孔碳/壳聚糖 | 2 | 2.51 | 15% NaCl溶液,15h,无盐结晶;1.5g NaCl颗粒120min后完全溶解 | [ | |
7 | 疏水多孔碳纳米纤维膜 | 3 | 通过疏水作用阻断盐离子向光吸收表面的传输,以避免盐的形成 | 1.43 | 20%的海水,3h后,无可见盐;6h(2sun),1.41kg/(m2·h) | [ |
8 | SiO2/纤维素纳米材料 | 3 | 1.25 | 12% NaCl溶液,6h,无盐结晶生成 | [ | |
9 | Fe3O4/聚(N-异丙基丙烯酰胺)/聚丙烯腈 | 3 | 1.76 | 20% NaCl溶液,5天,性能稳定;1.5g NaCl,3h内完全溶解 | [ | |
10 | 铜和银纳米颗粒/生物质炭 | 4 | 调节材料的表面电荷,使盐溶液中的某一种离子被排斥,抑制盐结晶的产生 | 1.49 | 20% NaCl溶液,10h,没有盐结晶;5g盐4h内溶解 | [ |
11 | 聚合物水凝胶 | 4 | 2.76 | 3.5% NaCl溶液,蒸发60次,每次1.5h,无盐结晶,2.65kg/(m2·h);20% NaCl溶液,2.33kg/(m2·h);0.5g NaCl固体,180min后溶解 | [ | |
12 | 悬挂弧形织物 | 5 | 通过设计特殊的蒸发系统,在盐浓度达到结晶极限之前将浓缩后的盐水排出蒸发系统 | 1.94 | 21% NaCl溶液,1.9kg/m2·h,12h,样品表面没有盐积累 | [ |
13 | 聚丙烯腈@硫化铜织物 | 5 | 2.27(海水) | 海水,100h,无固体盐晶体 | [ | |
14 | 聚苯胺/纤维素 | 5 | 1.56(3.5%盐水) | 3.5%盐水,100h,性能没有下降;浓缩后的溶液盐度达到17.11% | [ | |
15 | 印刷空气铺设纸 | 6 | 通过控制盐结晶的位置,在空间上实现盐的结晶与水的蒸发的隔离 | 1.75 | 10%的盐水,900~1700W/m2下,蒸发效率80%;6.28kWh/d时,产盐速率约400g/(m2·d) | [ |
16 | 炭化绿藻 | 6 | 1.35 | 20% NaCl溶液,在自然光下15天可以收集到24.26g NaCl,表面没有结晶 | [ | |
17 | 复合树脂/碳纳米管 | 6 | 2.63(天然海水) | 25% NaCl溶液,盐结晶位于3D蒸发器的顶点 | [ | |
18 | 二氧化硅/炭/二氧化硅 (3D杯状) | 6 | 1.7 | 10%或15% NaCl溶液,24h,杯的内部底部无盐晶体沉淀;15% NaCl,75h,蒸发速率未下降 | [ | |
19 | 还原性氧化石墨烯和壳聚糖 包覆的织物 | 6 | 2.09 | 20% NaCl,90min,盐结晶开始出现在蜂窝单元顶部,1.92kg/m2·h;3.5%和9%盐水,没有明显的盐积累 | [ | |
20 | 椴木 | 7 | 采用热辐射和对流传热来代替热传导进行传热 | 0.67 | 20%海水,8h(2sun),1.04~1.19kg/(m2·h) | [ |
21 | 聚苯乙烯纤维素球体 | 8 | 盐结晶的析出促使蒸发器自动旋转,更新蒸发面以实现连续蒸发 | 2.6 | 20% NaCl溶液,30min后出现微小的盐结晶,在50min时驱动光热球旋转进行下一轮蒸发,8h的平均蒸发速率为2.06kg/(m2·h) | [ |
表1 各种耐盐型光热材料和蒸发器的典型实例
序号 | 光热材料 | 耐盐 方法 | 作用机制 | 蒸发速率 /kg·m-2·h-1 | 耐盐性能 | 参考 文献 |
---|---|---|---|---|---|---|
1 | 碳纤维包覆藜麦纤维素纳米片 | 1 | 直接冲洗盐晶体或自 清洁 | 3.2 | 3.5%和7.0% NaCl溶液,12h,表面的盐分别在熄灯7h和12h后自动溶解 | [ |
1 | ||||||
2 | 碳纳米管耦合棉织物 | 1.59 | 17.5% NaCl溶液,8h,洗涤后,表面非常干净,对织物无不利影响 | [ | ||
1 | ||||||
3 | 半球形双层水凝胶 | 2.03 | 25% NaCl溶液,10h,熄灯1h后盐颗粒完全溶解 | [ | ||
4 | 天然木材 | 2 | 通过设计蒸发器的结构来增强盐分的逆向扩散,盐分因浓度差异自动扩散回散装水 | 1.46 (3.6%NaCl) | 20% NaCl溶液,6h,无盐沉积,100h的连续试验期间,蒸发效率为75%;15% NaCl溶液,6h(1~5sun),未有盐积累 | [ |
5 | 聚丙烯酰胺/MnO2水凝胶 | 2 | 3.297 | 25%盐水,12h,只出现微小的盐颗粒,2.393kg/(m2·h);0.5g NaCl粉末90min后完全溶解 | [ | |
6 | N,S-掺杂多孔碳/壳聚糖 | 2 | 2.51 | 15% NaCl溶液,15h,无盐结晶;1.5g NaCl颗粒120min后完全溶解 | [ | |
7 | 疏水多孔碳纳米纤维膜 | 3 | 通过疏水作用阻断盐离子向光吸收表面的传输,以避免盐的形成 | 1.43 | 20%的海水,3h后,无可见盐;6h(2sun),1.41kg/(m2·h) | [ |
8 | SiO2/纤维素纳米材料 | 3 | 1.25 | 12% NaCl溶液,6h,无盐结晶生成 | [ | |
9 | Fe3O4/聚(N-异丙基丙烯酰胺)/聚丙烯腈 | 3 | 1.76 | 20% NaCl溶液,5天,性能稳定;1.5g NaCl,3h内完全溶解 | [ | |
10 | 铜和银纳米颗粒/生物质炭 | 4 | 调节材料的表面电荷,使盐溶液中的某一种离子被排斥,抑制盐结晶的产生 | 1.49 | 20% NaCl溶液,10h,没有盐结晶;5g盐4h内溶解 | [ |
11 | 聚合物水凝胶 | 4 | 2.76 | 3.5% NaCl溶液,蒸发60次,每次1.5h,无盐结晶,2.65kg/(m2·h);20% NaCl溶液,2.33kg/(m2·h);0.5g NaCl固体,180min后溶解 | [ | |
12 | 悬挂弧形织物 | 5 | 通过设计特殊的蒸发系统,在盐浓度达到结晶极限之前将浓缩后的盐水排出蒸发系统 | 1.94 | 21% NaCl溶液,1.9kg/m2·h,12h,样品表面没有盐积累 | [ |
13 | 聚丙烯腈@硫化铜织物 | 5 | 2.27(海水) | 海水,100h,无固体盐晶体 | [ | |
14 | 聚苯胺/纤维素 | 5 | 1.56(3.5%盐水) | 3.5%盐水,100h,性能没有下降;浓缩后的溶液盐度达到17.11% | [ | |
15 | 印刷空气铺设纸 | 6 | 通过控制盐结晶的位置,在空间上实现盐的结晶与水的蒸发的隔离 | 1.75 | 10%的盐水,900~1700W/m2下,蒸发效率80%;6.28kWh/d时,产盐速率约400g/(m2·d) | [ |
16 | 炭化绿藻 | 6 | 1.35 | 20% NaCl溶液,在自然光下15天可以收集到24.26g NaCl,表面没有结晶 | [ | |
17 | 复合树脂/碳纳米管 | 6 | 2.63(天然海水) | 25% NaCl溶液,盐结晶位于3D蒸发器的顶点 | [ | |
18 | 二氧化硅/炭/二氧化硅 (3D杯状) | 6 | 1.7 | 10%或15% NaCl溶液,24h,杯的内部底部无盐晶体沉淀;15% NaCl,75h,蒸发速率未下降 | [ | |
19 | 还原性氧化石墨烯和壳聚糖 包覆的织物 | 6 | 2.09 | 20% NaCl,90min,盐结晶开始出现在蜂窝单元顶部,1.92kg/m2·h;3.5%和9%盐水,没有明显的盐积累 | [ | |
20 | 椴木 | 7 | 采用热辐射和对流传热来代替热传导进行传热 | 0.67 | 20%海水,8h(2sun),1.04~1.19kg/(m2·h) | [ |
21 | 聚苯乙烯纤维素球体 | 8 | 盐结晶的析出促使蒸发器自动旋转,更新蒸发面以实现连续蒸发 | 2.6 | 20% NaCl溶液,30min后出现微小的盐结晶,在50min时驱动光热球旋转进行下一轮蒸发,8h的平均蒸发速率为2.06kg/(m2·h) | [ |
1 | GORJIAN Shiva, GHOBADIAN Barat. Solar desalination: A sustainable solution to water crisis in Iran[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 571-584. |
2 | ZHENG Zhiying, LI Fengchen, LI Qian, et al. State-of-the-art of R&D on seawater desalination technology[J]. Chinese Science Bulletin, 2016, 61(21): 2344-2370. |
3 | 张学镭, 卜跃刚, 刘强, 等. 太阳能海水淡化的新技术发展现状[J]. 电力科学与工程, 2017, 33(12): 1-8. |
ZHANG Xuelei, BU Yuegang, LIU Qiang, et al. Development status of new technologies for solar desalination[J]. Electric Power Science and Engineering, 2017, 33(12): 1-8. | |
4 | GHASEMI Hadi, NI George, MARCONNET Amy Marie, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449. |
5 | ZHANG Ying, SIVAKUMAR Muttucumaru, YANG Shuqing, et al. Application of solar energy in water treatment processes: A review[J]. Desalination, 2018, 428: 116-145. |
6 | WANG Yuchao, ZHANG Lianbin, WANG Peng. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS Sustainable Chemistry&Engineering, 2016, 4(3): 1223-1230. |
7 | 赵建玲, 马晨雨, 李建强, 等. 基于全光谱太阳光利用的光热转换材料研究进展[J]. 材料工程, 2019, 47(6): 11-19. |
ZHAO Jianling, MA Chenyu, LI Jianqiang, et al. Research progress in photothermal conversion materials based on full spectrum sunlight utilization[J]. Journal of Materials Engineering, 2019, 47(6): 11-19. | |
8 | FANG Qile, LI Tiantian, CHEN Zaiming, et al. Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10672-10679. |
9 | HAO Dandan, YANG Yudi, XU Bi, et al. Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization[J]. Applied Thermal Engineering, 2018, 141: 406-412. |
10 | LI Jiyan, ZHOU Xu, MU Peng, et al. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 798-806. |
11 | LI Tian, LIU He, ZHAO Xinpeng, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport[J]. Advanced Functional Materials, 2018, 28(16): 1707134. |
12 | LI Dongsheng, HAN Dongtai, GUO Chuwen, et al. Facile preparation of MnO2-deposited wood for high-efficiency solar steam generation[J]. ACS Applied Energy Materials, 2021, 4(2): 1752-1762. |
13 | LIU Zhejun, SONG Haomin, JI Dengxin, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenges, 2017, 1(2): 1600003. |
14 | ITO Yoshikazu, TANABE Yoichi, HAN Jiuhui, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization[J]. Advanced Materials, 2015, 27(29): 4302-4307. |
15 | LI Xiuqiang, XU Weichao, TANG Mingyao, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-13958. |
16 | HE Jingxian, ZHANG Zheng, XIAO Chaohu, et al. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16308-16318. |
17 | MU Peng, BAI Wei, ZHANG Zheng, et al. Robust aerogels based on conjugated microporous polymer nanotubes with exceptional mechanical strength for efficient solar steam generation[J]. Journal of Materials Chemistry A, 2018, 6(37): 18183-18190. |
18 | ZHOU Xingyi, ZHAO Fei, GUO Youhong, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): eaaw5484. |
19 | WANG Fei, LI Jiyan, BAI Wei, et al. Recent progress on the solar-driven interfacial evaporation based on natural products and synthetic polymers[J]. Solar RRL, 2021, 5(12): 2100475. |
20 | ZHU Guilian, XU Jijian, ZHAO Wenli, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31716-31721. |
21 | WANG Juan, LI Yangyang, DENG Lin, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials, 2017, 29(3): 1603730. |
22 | YANG Peihua, LIU Kang, CHEN Qian, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9): 1923-1927. |
23 | SHI Yusuf, LI Renyuan, JIN Yong, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186. |
24 | CHEN Lihua, XIA Miaomiao, DU Jianbin, et al. Superhydrophilic and oleophobic porous architectures based on basalt fibers as oil-repellent photothermal materials for solar steam generation[J]. ChemSusChem, 2020, 13(3): 493-500. |
25 | JIA Juan, LIANG Weidong, SUN Hanxue, et al. Fabrication of bilayered attapulgite for solar steam generation with high conversion efficiency[J]. Chemical Engineering Journal, 2019, 361: 999-1006. |
26 | XIA Miaomiao, CHEN Lihua, ZHANG Chuantao, et al. Porous architectures based on halloysite nanotubes as photothermal materials for efficient solar steam generation[J]. Applied Clay Science, 2020, 189: 105523. |
27 | LI Jiyan, JING Yanju, XING Guoyu, et al. Solar-driven interfacial evaporation for water treatment: Advanced research progress and challenges[J]. Journal of Materials Chemistry A, 2022, 10(36): 18470-18489. |
28 | XIA Yun, KANG Yuan, WANG Zhuyuan, et al. Rational designs of interfacial-heating solar-thermal desalination devices: Recent progress and remaining challenges[J]. Journal of Materials Chemistry A, 2021, 9(11): 6612-6633. |
29 | LIU Guohua, CHEN Ting, XU Jinliang, et al. Salt-rejecting solar interfacial evaporation[J]. Cell Reports Physical Science, 2021, 2(1): 100310. |
30 | NAWAZ Fahad, YANG Yawei, ZHAO Shihan, et al. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination[J]. Journal of Materials Chemistry A, 2021, 9(30): 16233-16254. |
31 | HE Shuaiming, CHEN Chaoji, KUANG Yudi, et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination[J]. Energy & Environmental Science, 2019, 12(5): 1558-1567. |
32 | KUANG Yudi, CHEN Chaoji, HE Shuaiming, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials, 2019, 31(23): 1900498. |
33 | XIA Yun, HOU Qinfu, JUBAER Hasan, et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy & Environmental Science, 2019, 12(6): 1840-1847. |
34 | LIU Zixiao, WU Binhe, ZHU Bo, et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight[J]. Advanced Functional Materials, 2019, 29(43): 1905485. |
35 | XU Yangzhe, XU Jiale, ZHANG Jingyi, et al. All-in-one polymer sponge composite 3D evaporators for simultaneous high-flux solar-thermal desalination and electricity generation[J]. Nano Energy, 2022, 93: 106882. |
36 | ZHANG Panpan, LI Jing, Lingxiao LYU, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017, 11(5): 5087-5093. |
37 | JIANG Yuhao, AN Ning, SUN Qianyun, et al. Biomass hydrogels combined with carbon nanotubes for water purification via efficient and continuous solar-driven steam generation[J]. Science of the Total Environment, 2022, 837: 155757. |
38 | LIU Pan, HU Yibo, LI Xiaoying, et al. Enhanced solar evaporation using a scalable MoS2-based hydrogel for highly efficient solar desalination[J]. Angewandte Chemie Chemie International Edition, 2022: e202208587. |
39 | LIU Yiming, CHEN Jingwei, GUO Dawei, et al. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface[J]. ACS Applied Materials & Interfaces, 2015, 7(24): 13645-13652. |
40 | WANG Xinzhi, HE Yurong, LIU Xing. Synchronous steam generation and photodegradation for clean water generation based on localized solar energy harvesting[J]. Energy Conversion and Management, 2018, 173: 158-166. |
41 | XU Weichao, HU Xiaozhen, ZHUANG Shendong, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884. |
42 | HU Rong, ZHANG Junqi, KUANG Yudi, et al. A Janus evaporator with low tortuosity for long-term solar desalination[J]. Journal of Materials Chemistry A, 2019, 7(25): 15333-15340. |
43 | ALAM Md Kowsar, HE Mantang, CHEN Wenjing, et al. Stable and salt-resistant Janus evaporator based on cellulose composite aerogels from waste cotton fabric[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41114-41121. |
44 | LI Haonan, YANG Haocheng, ZHU Chengye, et al. A self-descaling Janus nanofibrous evaporator enabled by a “moving interface” for durable solar-driven desalination of hypersaline water[J]. Journal of Materials Chemistry A, 2022, 10: 20856-20865. |
45 | ZHU Ruofei, WANG Dan, ZHANG Jichao, et al. Biomass eggplant-derived photothermal aerogels with Janus wettability for cost-effective seawater desalination[J]. Desalination, 2022, 527: 115585. |
46 | XIAO Chaohu, LIANG Weidong, CHEN Lihua, et al. Janus poly(ionic liquid) monolithic photothermal materials with superior salt-rejection for efficient solar steam generation[J]. ACS Applied Energy Materials, 2019, 2(12): 8862-8870. |
47 | MA Xu, FANG Wenzhang, YING Wen, et al. A robust asymmetric porous SWCNT/Gelatin thin membrane with salt-resistant for efficient solar vapor generation[J]. Applied Materials Today, 2020, 18: 100459. |
48 | LIU Changkun, CAI Chaojie, ZHAO Xinzhen. Overcoming salt crystallization during solar desalination based on diatomite-regulated water supply[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1548-1554. |
49 | GE Can, SONG Zheheng, YUAN Yu, et al. Solar steam generation by porous conducting polymer hydrogel[J]. Solar Energy, 2022, 240: 237-245. |
50 | SAAD Aya Gamal, GEBREIL Ahmed, KOSPA Doaa A, et al. Integrated solar seawater desalination and power generation via plasmonic sawdust-derived biochar: Waste to wealth[J]. Desalination, 2022, 535: 115824. |
51 | ZENG Jian, WANG Qingyang, SHI Yang, et al. Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination[J]. Advanced Energy Materials, 2019, 9(38): 1900552. |
52 | KOU Hui, LIU Zixiao, ZHU Bo, et al. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight[J]. Desalination, 2019, 462: 29-38. |
53 | ZHU Bo, KOU Hui, LIU Zixiao, et al. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 35005-35014. |
54 | YANG Jie, SUO Xidong, ZHAO Jingjing, et al. Carbon fiber coated by quinoa cellulose nanosheet with outstanding scaled salt self-cleaning performance and purification of organic and antibiotic contaminated water[J]. Scientific reports, 2022, 12(1): 8777. |
55 | NI George, ZANDAVI Seyed Hadi, JAVID Seyyed Morteza, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
56 | LI Jiyan, ZHOU Xu, JING Yanju, et al. Ionic liquid-assisted alignment of corn straw microcrystalline cellulose aerogels with low tortuosity channels for salt-assistance solar steam evaporators[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12181-12190. |
57 | XU Ruiqi, CUI Hongzhi, SUN Kunyu, et al. Controllable 3D interconnected featured pore structure of transition metal borides-carbonitride/MoS2 for efficiently solar evaporation and wastewater purification[J]. Chemical Engineering Journal, 2022, 446: 137275. |
58 | ZHANG Weimiao, YAN Jun, SU Qin, et al. Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance[J].Journal of Colloid and Interface Science, 2022, 612: 66-75. |
59 | ZHANG Yaoxin, ZHANG Hong, XIONG Ting, et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation[J]. Energy & Environmental Science, 2020, 13(12): 4891-4902. |
60 | ZHANG Yaoxin, XIONG Ting, SURESH Lakshmi, et al. Guaranteeing complete salt rejection by channeling saline water through fluidic photothermal structure toward synergistic zero energy clean water production and In situ energy generation[J]. ACS Energy Letters, 2020, 5(11): 3397-3404. |
61 | WU Lei, DONG Zhichao, CAI Zheren, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications, 2020, 11(1): 521. |
62 | GAO Can, ZHU Jingjing, LI Jiecong, et al. Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation[J]. Journal of Colloid and Interface Science, 2022, 619: 322-330. |
63 | SHAO Yang, SHEN Anqi, LI Ningbo, et al. Marangoni effect drives salt crystallization away from the distillation zone for large-scale continuous solar passive desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30324-30331. |
64 | SHI Yusuf, ZHANG Chenlin, LI Renyuan, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830. |
65 | XU Jiale, WANG Zizhao, CHANG Chao, et al. Solar-driven interfacial desalination for simultaneous freshwater and salt generation[J]. Desalination, 2020, 484: 114423. |
66 | LI Jiyan, ZHOU Xu, ZHANG Jiayi, et al. Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS Applied Energy Materials, 2020, 3(3): 3024-3032. |
67 | LIU Zixiao, ZHOU Zhan, WU Naiyang, et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination[J]. ACS Nano, 2021, 15(8): 13007-13018. |
68 | COOPER Thormas A, ZANDAVI Seyed Hadi, NI George W, et al. Contactless steam generation and superheating under one sun illumination[J]. Nature Communications, 2018, 9: 5086. |
69 | BIAN Yue, TANG Kun, TIAN Liyan, et al. Sustainable solar evaporation while salt accumulation[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 4935-4942. |
70 | XU Ning, LI Jinlei, WANG Yang, et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine[J]. Science advances, 2019, 5(7): eaaw7013. |
71 | XIA Yun, LI Yang, YUAN Shi, et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine[J]. Journal of Materials Chemistry A, 2020, 8(32): 16212-16217. |
72 | WU Xuan, WANG Yida, WU Pan, et al. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation[J]. Advanced Functional Materials, 2021, 31(34): 2102618. |
73 | ZHANG Caiyan, CHEN Xuelong, CUI Baozheng, et al. Dual-layer multichannel hydrogel evaporator with high salt resistance and a hemispherical structure toward water desalination and purification[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 26303-26313. |
74 | SONG Changyuan, JIANG Zhenghao, GU Xiangyi, et al. A bilayer solar evaporator with all-in-one design for efficient seawater desalination[J]. Journal of Colloid and Interface Science, 2022, 616: 709-719. |
[1] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[2] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[3] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[4] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[5] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
[6] | 毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193. |
[7] | 白浩良, 王晨, 卢静, 康雪. 聚光光伏系统太阳能电池散热技术及发展现状[J]. 化工进展, 2023, 42(1): 159-177. |
[8] | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
[9] | 王泽鹏, 苑中显, 王洁, 文鑫, 刘一默. 硅胶粒径对太阳能吸附制冷系统性能的影响[J]. 化工进展, 2022, 41(7): 3545-3552. |
[10] | 何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730. |
[11] | 马进伟, 方浩, 陈茜茜, 陈海飞, 童维维. 基于焓-熵-㶲平衡的无盖板PV/T系统热力学分析与优化[J]. 化工进展, 2022, 41(4): 1840-1847. |
[12] | 曹文胜, 徐建壮, 郭兆春, 林文胜, BLUTH Christoph. 冷能利用片冰机海水淡化动态仿真[J]. 化工进展, 2021, 40(S1): 61-68. |
[13] | 朱乔虹, 邢明阳, 张金龙. 光催化分解水制氢中硫化物空心结构的研究进展[J]. 化工进展, 2021, 40(9): 4774-4781. |
[14] | 王雅君, 张文灿, 李宇明, 姜桂元, 姚文清. 碳点用于光催化分解水制氢的研究进展[J]. 化工进展, 2021, 40(6): 2952-2961. |
[15] | 凌祥, 宋丹阳, 陈晓轶, 张志浩, 靳晓刚, 王燕. 钙基热化学储能体系装备与系统研究进展[J]. 化工进展, 2021, 40(4): 1777-1796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |