化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3589-3599.DOI: 10.16085/j.issn.1000-6613.2022-1608
收稿日期:
2022-08-31
修回日期:
2022-10-23
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
雷文,刘承果
作者简介:
余希希(1999—),女,硕士研究生,研究方向为生物质高分子材料。E-mail:yuxx1012@163.com。
基金资助:
YU Xixi1(), ZHANG Jinshuai2, LEI Wen1(), LIU Chengguo2()
Received:
2022-08-31
Revised:
2022-10-23
Online:
2023-07-15
Published:
2023-08-14
Contact:
LEI Wen, LIU Chengguo
摘要:
光固化技术的高效、适应性广、经济、节能与环境友好等特点使得近年来光固化高分子材料在人类生产生活中被广泛应用。然而,光固化高分子材料的结构稳定性使得材料表面或内部一旦出现破损便难以修复,造成大量资源浪费与环境污染。动态共价键可以在外界刺激作用下(光照、加热等)发生可逆的断裂和重组,从而导致分子拓扑结构的动态调整,赋予光固化高分子材料结构可调整、可循环利用和自修复性能等。本文综述了近些年来基于酯键、Diels-Alder反应、二硫键、硼酸酯键、位阻脲键等可逆共价键自修复的光固化高分子材料设计与制备,对近年来不同类型动态共价键光固化高分子材料的优缺点和应用进行了评述,最后指出动态共价键光固化高分子材料力学性能的弱势以及基于动态共价键修复的单一性,并对该领域未来的研究方向作了展望。
中图分类号:
余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599.
YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599.
1 | KIM Jin Seung, CHO Bong Sang, KWEON Jeong Ohk, et al. Preparation and properties of UV-curable di-functional sulfur-containing thioacrylate and thiourethane acrylate monomers with high refractive indices[J]. Progress in Organic Coatings, 2014, 77(11): 1695-1700. |
2 | BRETTERBAUER Klaus, HOLZMANN Claudia, RUBATSCHER Egon, et al. UV-curable coatings of highly crosslinked trimethylmelamine based acrylates and methacrylates[J]. European Polymer Journal, 2013, 49(12): 4141-4148. |
3 | UNNO Noriyuki, SATAKE Shin ichi, TANIGUCHI Jun. Super-resolution technique for nanoimprint mold using elastic UV-curable resin[J]. Microelectronic Engineering, 2013, 110: 167-172. |
4 | ZHENG Chao, LIU Guojun, HU Heng. UV-curable antismudge coatings[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25623-25630. |
5 | HAKEIM Osama Abdel, ARAFA Asmaa Ahmed, ZAHRAN Magdy Kandil, et al. Characterisation and application of pigmented UV-curable inkjet inks[J]. Pigment & Resin Technology, 2018, 47(2): 164-172. |
6 | SUGITA Hikaru, ITOU Keisuke, ITOU Yoshikazu, et al. Multi-acrylate-based UV-curable dismantlable adhesives[J]. International Journal of Adhesion and Adhesives, 2021, 104: 102758. |
7 | AGUIRRESAROBE Robert H, NEVEJANS Sil, RECK Bernd, et al. Healable and self-healing polyurethanes using dynamic chemistry[J]. Progress in Polymer Science, 2021, 114: 101362. |
8 | CHANG Kun, JIA Han, GU Shu-Ying. A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds[J]. European Polymer Journal, 2019, 112: 822-831. |
9 | Saul UTRERA-BARRIOS, VERDEJO Raquel, LÓPEZ-MANCHADO Miguel A, et al. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review[J]. Materials Horizons, 2020, 7(11): 2882-2902. |
10 | 陈兴幸, 钟倩云, 王淑娟, 等. 动态共价键高分子材料的研究进展[J]. 高分子学报, 2019, 50(5): 469-484. |
CHEN Xingxing, ZHONG Qianyun, WANG Shujuan, et al. Progress in dynamic covalent polymers[J]. Acta Polymerica Sinica, 2019, 50(5): 469-484. | |
11 | LEE Sang Hyub, SHIN Se Ra, LEE Dai Soo. Self-healing of cross-linked PU via dual-dynamic covalent bonds of a Schiff base from cystine and vanillin[J]. Materials & Design, 2019, 172: 107774. |
12 | FAN Longfei, RONG Minzhi, ZHANG Mingqiu, et al. Repeated intrinsic self-healing of wider cracks in polymer via dynamic reversible covalent bonding molecularly combined with a two-way shape memory effect[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38538-38546. |
13 | XIANG Hongping, YIN Jingfeng, LIN Guanghong, et al. Photo-crosslinkable, self-healable and reprocessable rubbers[J]. Chemical Engineering Journal, 2019, 358: 878-890. |
14 | LIU Maochen, ZHONG Jiang, LI Zijian, et al. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding[J]. European Polymer Journal, 2020, 124: 109475. |
15 | WANG Shuaipeng, DAI Jinyue, TENG Na, et al. Synthesis of mechanically robust and self-healing UV-curable materials from renewable feedstock[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(45): 16842-16852. |
16 | WANG Shuaipeng, TENG Na, DAI Jinyue, et al. Taking advantages of intramolecular hydrogen bonding to prepare mechanically robust and catalyst-free vitrimer[J]. Polymer, 2020, 210: 123004. |
17 | ZHANG Biao, KOWSARI Kavin, SERJOUEI Ahmad, et al. Reprocessable thermosets for sustainable three-dimensional printing[J]. Nature Communications, 2018, 9(1): 1831. |
18 | LU Chuanwei, WANG Chunpeng, YU Juan, et al. Two-step 3D-printing approach toward sustainable, repairable, fluorescent shape-memory thermosets derived from cellulose and rosin[J]. ChemSusChem, 2020, 13(5): 854. |
19 | FENG Xiaming, LI Guoqiang. Versatile phosphate diester-based flame retardant vitrimers via catalyst-free mixed transesterification[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57486-57496. |
20 | ZHANG Jinshuai, HUANG Jia, ZHU Guoqiang, et al. Self-healing, recyclable, and removable UV-curable coatings derived from tung oil and malic acid[J]. Green Chemistry, 2021, 23(16): 5875-5886. |
21 | HUANG Jia, ZHANG Jinshuai, ZHU Guoqiang, et al. Self-healing, high-performance, and high-biobased-content UV-curable coatings derived from rubber seed oil and itaconic acid[J]. Progress in Organic Coatings, 2021, 159: 106391-106402. |
22 | 黄佳, 张金帅, 朱国强, 等. 基于大豆油和衣康酸的自修复型紫外光固化涂料[J]. 涂料工业, 2021, 51(10): 44-53. |
HUANG Jia, ZHANG Jinshuai, ZHU Guoqiang, et al. Self-heal UV-curable coatings derived from soybean oil and itaconic acid[J]. Paint & Coatings Industry, 2021, 51(10): 44-53. | |
23 | TURKENBURG D H, FISCHER H R. Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites[J]. Polymer, 2015, 79: 187-194. |
24 | LIU Yingling, CHUO Tsai Wei. Self-healing polymers based on thermally reversible Diels-Alder chemistry[J]. Polymer Chemistry, 2013, 4(7): 2194-2205. |
25 | KROGSGAARD Marie, BEHRENS Manja A, PEDERSEN Jan Skov, et al. Self-healing mussel-inspired multi-pH-responsive hydrogels[J]. Biomacromolecules, 2013, 14(2): 297-301. |
26 | CANADELL Judit, GOOSSENS Han, KLUMPERMAN Bert. Self-healing materials based on disulfide links[J]. Macromolecules, 2011, 44(8): 2536-2541. |
27 | LI Qiutong, JIANG Miaojie, WU Gang, et al. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels-Alder network and amino-functionalized carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20797-20807. |
28 | TURKENBURG Daniel H, DURANT Yvon, FISCHER Hartmut R. Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction[J]. Progress in Organic Coatings, 2017, 111: 38-46. |
29 | KE Xiaoxue, LIANG Hongbo, XIONG Lei, et al. Synthesis, curing process and thermal reversible mechanism of UV curable polyurethane based on Diels-Alder structure[J]. Progress in Organic Coatings, 2016, 100: 63-69. |
30 | AIZPURUA June, MARTIN Loli, Mercedes FERNÁNDEZ, et al. Recyclable, remendable and healing polyurethane/acrylic coatings from UV curable waterborne dispersions containing Diels-Alder moieties[J]. Progress in Organic Coatings, 2020, 139: 105460. |
31 | WANG Zhengyue, YANG Haitao, FAIRBANKS Benjamin D, et al. Fast self-healing engineered by UV-curable polyurethane contained Diels-Alder structure[J]. Progress in Organic Coatings, 2019, 131: 131-136. |
32 | WANG Zhengyue, LIANG Hongbo, YANG Haitao, et al. UV-curable self-healing polyurethane coating based on thiol-ene and Diels-Alder double click reactions[J]. Progress in Organic Coatings, 2019, 137: 105282. |
33 | LIU Jingcheng, ZHOU Zhen, SU Xunzheng, et al. Stiff UV-curable self-healing coating based on double reversible networks containing Diels-Alder cross-linking and hydrogen bonds[J]. Progress in Organic Coatings, 2020, 146: 105699. |
34 | JIA Han, GU Shuying. A near infrared induced self-healable composite based on disulfide bonds for flexible electronics[J]. Journal of Polymer Research, 2020, 27(10): 1-13. |
35 | WAN Ting, CHEN Dajun. Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain[J]. Journal of Materials Science, 2017, 52(1): 197-207. |
36 | MICHAL Brian T, JAYE Colin A, SPENCER Emily J, et al. Inherently photohealable and thermal shape-memory polydisulfide networks[J]. ACS Macro Letters, 2013, 2(8): 694-699. |
37 | OTSUKA Hideyuki, NAGANO Shinsuke, KOBASHI Yasuharu, et al. A dynamic covalent polymer driven by disulfidemetathesis under photoirradiation[J]. Chemical Communications, 2010, 46(7): 1150-1152. |
38 | HAN Guang, NIE Juyin, ZHANG Huiqi. Facile preparation of recyclable photodeformable azobenzene polymer fibers with chemically crosslinked networks[J]. Polymer Chemistry, 2016, 7(32): 5088-5092. |
39 | ZHAO Dongli, LIU Shanshan, WU Yefei, et al. Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings[J]. Progress in Organic Coatings, 2019, 133: 289-298. |
40 | ZHAO Dongli, DU Zhukang, LIU Shanshan, et al. UV light curable self-healing superamphiphobic coatings by photopromoted disulfide exchange reaction[J]. ACS Applied Polymer Materials, 2019, 1(11): 2951-2960. |
41 | LI Xinpan, YU Ran, HE Yangyang, et al. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing[J]. ACS Macro Letters, 2019, 8(11): 1511-1516. |
42 | ZHANG Manwen, TAO Xinglin, YU Ran, et al. Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics[J]. Journal of Materials Chemistry A, 2022, 10(22): 12005-12015. |
43 | ZHONG Ye, XU Yufang, ANSLYN Eric V. Studies of reversible conjugate additions[J]. European Journal of Organic Chemistry, 2013, 2013(23): 5017-5021. |
44 | YU Kunhao, XIN An, DU Haixu, et al. Additive manufacturing of self-healing elastomers[J]. NPG Asia Materials, 2019, 11: 7. |
45 | CHENG Kezi, CHORTOS Alex, LEWIS Jennifer A, et al. Photoswitchable covalent adaptive networks based on thiol-ene elastomers[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4552-4561. |
46 | MIAO Jiatao, GE Meiying, WU Yadong, et al. 3D printing of sacrificial thermosetting mold for building near-infrared irradiation induced self-healable 3D smart structures[J]. Chemical Engineering Journal, 2022, 427: 131580. |
47 | WANG Zhanhua, GANGARAPU Satesh, ESCORIHUELA Jorge, et al. Dynamic covalent urea bonds and their potential for development of self-healing polymer materials[J]. Journal of Materials Chemistry A, 2019, 7(26): 15933-15943. |
48 | ZHANG Qi, SHI Chenyu, QU Dahui, et al. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers[J]. Science Advances, 2018, 4(7): eaat8192. |
49 | ZHANG Qi, DENG Yuanxin, LUO Hongxia, et al. Assembling a natural small molecule into a supramolecular network with high structural order and dynamic functions[J]. Journal of the American Chemical Society, 2019, 141: 12804-12814. |
50 | DENG Yuanxin, ZHANG Qi, FERINGA Ben L, et al. Toughening a self-healable supramolecular polymer by ionic cluster-enhanced iron-carboxylate complexes[J]. Angewandte Chemie, 2020, 132(13): 5316-5321. |
51 | ZHANG Qi, DENG Yuanxin, SHI Chenyu, et al. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides)[J]. Matter, 2021, 4(4): 1352-1364. |
52 | SIEREDZINSKA Bianka, ZHANG Qi, VAN DEN BERG Keimpe J, et al. Photo-crosslinking polymers by dynamic covalent disulfide bonds[J]. Chemical Communications, 2021, 57(77): 9838-9841. |
53 | RÖTTGER M, DOMENECH T, VAN DER WEEGEN R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis[J]. Science, 2017, 356(6333): 62-65. |
54 | LIU Zhu, XIAO Dingshu, LIU Guocong, et al. Self-healing and reprocessing of transparent UV-cured polysiloxane elastomer[J]. Progress in Organic Coatings, 2021, 159: 106450. |
55 | ROBINSON Lindsay L, SELF Jeffrey L, FUSI Alexander D, et al. Chemical and mechanical tunability of 3D-printed dynamic covalent networks based on boronate esters[J]. ACS Macro Letters, 2021, 10(7): 857-863. |
56 | LAI Jiancheng, MEI Jinfeng, JIA Xiaoyong, et al. A stiff and healable polymer based on dynamic-covalent boroxine bonds[J]. Advanced Materials, 2016, 28(37): 8277-8282. |
57 | PENG Shuqiang, WANG Zian, LIN Jinbin, et al. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable sacrificial mold[J]. Advanced Functional Materials, 2021, 31(10): 2008729. |
58 | WANG Sheng, MA Songqi, LI Qiong, et al. Facile preparation of polyimine vitrimers with enhanced creep resistance and thermal and mechanical properties via metal coordination[J]. Macromolecules, 2020, 53(8): 2919-2931. |
59 | ZHANG Yanfeng, YING Hanze, HART Kevin R, et al. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds[J]. Advanced Materials, 2016, 28(35): 7646-7651. |
60 | ZHANG Qiang, WANG Shujuan, RAO Bin, et al. Hindered urea bonds for dynamic polymers: An overview[J]. Reactive and Functional Polymers, 2021, 159: 104807. |
61 | JIANG Liang, LEI Yuan, XIAO Yao, et al. Mechanically robust, exceptionally recyclable and shape memory cross-linked network based on reversible dynamic urea bonds[J]. Journal of Materials Chemistry A, 2020, 8(42): 22369-22378. |
62 | Sungwoo JUN, KIM Sun Ok, LEE Hee Jin, et al. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds[J]. Journal of Materials Chemistry A, 2019, 7(7): 3101-3111. |
63 | ZHANG Jinshuai, SHANG Qianqian, HU Yun, et al. Castor-oil-based UV-curable hybrid coatings with self-healing, recyclability, removability, and hydrophobicity[J]. Progress in Organic Coatings, 2022, 165: 106742. |
64 | HAMACHI Leslie S, Daniel A RAU, ARRINGTON Clay B, et al. Dissociative carbamate exchange anneals 3D printed acrylates[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38680-38687. |
65 | ZHENG Ning, FANG Zizheng, ZOU Weike, et al. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation[J]. Angewandte Chemie International Edition, 2016, 55(38): 11421-11425. |
66 | DELEBECQ Etienne, PASCAULT Jean Pierre, BOUTEVIN Bernard, et al. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane[J]. Chemical Reviews, 2013, 113(1): 80-118. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[5] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[6] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[7] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[8] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[9] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[10] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[13] | 刘柏成, 李法云, 赵琦慧, 吝美霞. 禾本科植物修复多环芳烃污染土壤研究进展[J]. 化工进展, 2023, 42(7): 3736-3748. |
[14] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[15] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |