化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3187-3196.DOI: 10.16085/j.issn.1000-6613.2022-1498
杨家添1(), 唐金铭1, 梁恣荣2, 黎胤宏1, 胡华宇2, 陈渊1()
收稿日期:
2022-08-15
修回日期:
2022-11-22
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
陈渊
作者简介:
杨家添(1965—),男,高级实验师,研究方向为淀粉改性。E-mail:yjt8682@163.com。
基金资助:
YANG Jiatian1(), TANG Jinming1, LIANG Zirong2, LI Yinhong1, HU Huayu2, CHEN Yuan1()
Received:
2022-08-15
Revised:
2022-11-22
Online:
2023-06-25
Published:
2023-06-29
Contact:
CHEN Yuan
摘要:
为了获得一种可工业化生产的淀粉基高吸水树脂抑尘材料,以木薯淀粉、丙烯酸为原料,过硫酸铵和亚硫酸钠为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,在机械活化作用下一步固相法合成木薯淀粉接枝丙烯酸高吸水性树脂抑尘剂。采用黏度、吸水率为评价指标,通过单因素和正交试验获得最优制备参数。采用FTIR、XRD、SEM、13C NMR等对产品进行了结构表征和应用性能测试。结果表明,木薯淀粉成功接枝丙烯酸形成高吸水性树脂,该方法能有效地破坏淀粉颗粒结构,提高反应效率。在球磨时间3h、中和度80%、反应温度60℃、丙烯酸与淀粉摩尔比为1∶1、引发剂用量0.9g、交联剂用量0.05g、球磨介质500mL、球磨转速380r/min条件下,所合成的淀粉基抑尘剂黏度为670mPa·s,吸水率为116.21g/g,单体转化率为96.81%,接枝率为42.35%,接枝效率为81.36%。喷洒浓度2%淀粉基抑尘剂的尘样可有效延长水分蒸发时间,固化尘样颗粒,增强尘样抗破坏性能,提高抑尘效果。尘样蒸发7h后含湿率仍高达6.85%,40目以上的尘样粒径达到38.93%,风速9m/s下的抑尘率达到96.40%,抑尘效果大大优于喷洒水的尘样,证明淀粉基抑尘剂为一种绿色环保型抑尘剂。
中图分类号:
杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196.
YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196.
水平 | 因素 | ||||
---|---|---|---|---|---|
反应温度 /℃ | 中和度 /% | 淀粉与 丙烯酸摩尔比 | 引发剂用量 /g | 交联剂用量 /g | |
1 | 40 | 60 | 0.5∶1 | 0.6 | 0.03 |
2 | 50 | 70 | 0.75∶1 | 0.9 | 0.05 |
3 | 60 | 80 | 1∶1 | 1.2 | 0.07 |
4 | 70 | 90 | 1∶0.75 | 1.5 | 0.09 |
表1 正交试验因素水平表
水平 | 因素 | ||||
---|---|---|---|---|---|
反应温度 /℃ | 中和度 /% | 淀粉与 丙烯酸摩尔比 | 引发剂用量 /g | 交联剂用量 /g | |
1 | 40 | 60 | 0.5∶1 | 0.6 | 0.03 |
2 | 50 | 70 | 0.75∶1 | 0.9 | 0.05 |
3 | 60 | 80 | 1∶1 | 1.2 | 0.07 |
4 | 70 | 90 | 1∶0.75 | 1.5 | 0.09 |
球磨时间(tg) /h | 单体转化率(α) /% | 接枝率(G) /% | 接枝效率(GE) /% |
---|---|---|---|
1 | 36.46 | 21.26 | 68.47 |
2 | 56.64 | 29.56 | 70.69 |
3 | 96.81 | 42.35 | 81.36 |
4 | 85.42 | 38.76 | 78.26 |
5 | 69.51 | 33.99 | 74.21 |
表2 球磨时间对接枝率和接枝效率的影响
球磨时间(tg) /h | 单体转化率(α) /% | 接枝率(G) /% | 接枝效率(GE) /% |
---|---|---|---|
1 | 36.46 | 21.26 | 68.47 |
2 | 56.64 | 29.56 | 70.69 |
3 | 96.81 | 42.35 | 81.36 |
4 | 85.42 | 38.76 | 78.26 |
5 | 69.51 | 33.99 | 74.21 |
实验序号 | 反应温度/℃ | 中和度/% | 淀粉与丙烯酸摩尔比 | 引发剂用量/g | 交联剂用量/g | 黏度/mPa·s | 吸水率/g·g-1 |
---|---|---|---|---|---|---|---|
1 | 1(40) | 1(60) | 1(0.5∶1) | 1(0.6) | 1(0.03) | 90 | 19.53 |
2 | 1(40) | 2(70) | 2(0.75∶1) | 2(0.9) | 2(0.05) | 300 | 80.43 |
3 | 1(40) | 3(80) | 3(1∶1) | 3(1.2) | 3(0.07) | 330 | 77.49 |
4 | 1(40) | 4(90) | 4(1∶0.75) | 4(1.5) | 4(0.09) | 150 | 12.38 |
5 | 2(50) | 1(60) | 2(0.75∶1) | 3(1.2) | 4(0.09) | 170 | 20.88 |
6 | 2(50) | 2(70) | 1(0.5∶1) | 4(1.5) | 3(0.07) | 160 | 25.12 |
7 | 2(50) | 3(80) | 4(1∶0.75) | 1(0.6) | 2(0.05) | 290 | 72.73 |
8 | 2(50) | 4(90) | 3(1∶1) | 2(0.9) | 1(0.03) | 510 | 78.26 |
9 | 3(60) | 1(60) | 3(1∶1) | 4(1.5) | 2(0.05) | 430 | 90.59 |
10 | 3(60) | 2(70) | 4(1∶0.75) | 3(1.2) | 1(0.03) | 240 | 55.62 |
11 | 3(60) | 3(80) | 1(1∶1) | 2(0.9) | 4(0.09) | 320 | 59.82 |
12 | 3(60) | 4(90) | 2(0.75∶1) | 1(0.6) | 3(0.07) | 200 | 42.12 |
13 | 4(70) | 1(60) | 4(1∶0.75) | 2(0.9) | 3(0.07) | 240 | 35.15 |
14 | 4(70) | 2(70) | 3(1∶1) | 1(0.6) | 4(0.09) | 240 | 71.36 |
15 | 4(70) | 3(80) | 2(0.75∶1) | 4(1.5) | 1(0.03) | 220 | 38.59 |
16 | 4(70) | 4(90) | 1(0.5∶1) | 3(1.2) | 2(0.05) | 260 | 60.17 |
K1 | 217.5 | 232.5 | 208 | 205 | 265 | 黏度极差分析 | |
K2 | 282.5 | 235 | 223 | 342.5 | 320 | ||
K3 | 297.5 | 290 | 378 | 250 | 232.5 | ||
K4 | 240 | 280 | 230 | 240 | 220 | ||
R1 | 80 | 57.5 | 170 | 137.5 | 100 | ||
K5 | 52.6775 | 41.5375 | 41.16 | 51.435 | 48 | 吸水率极差分析 | |
K6 | 49.2475 | 58.1325 | 45.505 | 63.415 | 75.98 | ||
K7 | 62.0375 | 62.1575 | 79.425 | 53.54 | 44.97 | ||
K8 | 51.3175 | 48.2325 | 43.97 | 41.67 | 41.11 | ||
R2 | 12.79 | 20.62 | 38.265 | 21.745 | 34.87 |
表3 正交试验结果与极差分析
实验序号 | 反应温度/℃ | 中和度/% | 淀粉与丙烯酸摩尔比 | 引发剂用量/g | 交联剂用量/g | 黏度/mPa·s | 吸水率/g·g-1 |
---|---|---|---|---|---|---|---|
1 | 1(40) | 1(60) | 1(0.5∶1) | 1(0.6) | 1(0.03) | 90 | 19.53 |
2 | 1(40) | 2(70) | 2(0.75∶1) | 2(0.9) | 2(0.05) | 300 | 80.43 |
3 | 1(40) | 3(80) | 3(1∶1) | 3(1.2) | 3(0.07) | 330 | 77.49 |
4 | 1(40) | 4(90) | 4(1∶0.75) | 4(1.5) | 4(0.09) | 150 | 12.38 |
5 | 2(50) | 1(60) | 2(0.75∶1) | 3(1.2) | 4(0.09) | 170 | 20.88 |
6 | 2(50) | 2(70) | 1(0.5∶1) | 4(1.5) | 3(0.07) | 160 | 25.12 |
7 | 2(50) | 3(80) | 4(1∶0.75) | 1(0.6) | 2(0.05) | 290 | 72.73 |
8 | 2(50) | 4(90) | 3(1∶1) | 2(0.9) | 1(0.03) | 510 | 78.26 |
9 | 3(60) | 1(60) | 3(1∶1) | 4(1.5) | 2(0.05) | 430 | 90.59 |
10 | 3(60) | 2(70) | 4(1∶0.75) | 3(1.2) | 1(0.03) | 240 | 55.62 |
11 | 3(60) | 3(80) | 1(1∶1) | 2(0.9) | 4(0.09) | 320 | 59.82 |
12 | 3(60) | 4(90) | 2(0.75∶1) | 1(0.6) | 3(0.07) | 200 | 42.12 |
13 | 4(70) | 1(60) | 4(1∶0.75) | 2(0.9) | 3(0.07) | 240 | 35.15 |
14 | 4(70) | 2(70) | 3(1∶1) | 1(0.6) | 4(0.09) | 240 | 71.36 |
15 | 4(70) | 3(80) | 2(0.75∶1) | 4(1.5) | 1(0.03) | 220 | 38.59 |
16 | 4(70) | 4(90) | 1(0.5∶1) | 3(1.2) | 2(0.05) | 260 | 60.17 |
K1 | 217.5 | 232.5 | 208 | 205 | 265 | 黏度极差分析 | |
K2 | 282.5 | 235 | 223 | 342.5 | 320 | ||
K3 | 297.5 | 290 | 378 | 250 | 232.5 | ||
K4 | 240 | 280 | 230 | 240 | 220 | ||
R1 | 80 | 57.5 | 170 | 137.5 | 100 | ||
K5 | 52.6775 | 41.5375 | 41.16 | 51.435 | 48 | 吸水率极差分析 | |
K6 | 49.2475 | 58.1325 | 45.505 | 63.415 | 75.98 | ||
K7 | 62.0375 | 62.1575 | 79.425 | 53.54 | 44.97 | ||
K8 | 51.3175 | 48.2325 | 43.97 | 41.67 | 41.11 | ||
R2 | 12.79 | 20.62 | 38.265 | 21.745 | 34.87 |
蒸发 时间/h | 不同质量分数抑尘剂条件下尘样含湿率 | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
1 | 46.21 | 65.43 | 70.59 | 77.87 | 79.35 | 68.39 |
2 | 33.62 | 50.21 | 62.38 | 65.40 | 43.81 | 36.43 |
3 | 18.55 | 38.46 | 44.71 | 50.88 | 23.70 | 19.27 |
4 | 8.71 | 21.57 | 30.22 | 36.62 | 12.25 | 8.22 |
5 | 3.23 | 9.83 | 17.50 | 23.06 | 6.24 | 1.20 |
6 | 0.75 | 2.68 | 5.43 | 11.26 | 2.51 | 0.73 |
7 | 0.05 | 0.21 | 1.21 | 6.85 | 0.89 | 0.41 |
表4 不同浓度的抑尘剂的抗蒸发性能(含湿率,%)
蒸发 时间/h | 不同质量分数抑尘剂条件下尘样含湿率 | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
1 | 46.21 | 65.43 | 70.59 | 77.87 | 79.35 | 68.39 |
2 | 33.62 | 50.21 | 62.38 | 65.40 | 43.81 | 36.43 |
3 | 18.55 | 38.46 | 44.71 | 50.88 | 23.70 | 19.27 |
4 | 8.71 | 21.57 | 30.22 | 36.62 | 12.25 | 8.22 |
5 | 3.23 | 9.83 | 17.50 | 23.06 | 6.24 | 1.20 |
6 | 0.75 | 2.68 | 5.43 | 11.26 | 2.51 | 0.73 |
7 | 0.05 | 0.21 | 1.21 | 6.85 | 0.89 | 0.41 |
标准筛目数 | 不同质量掺量抑尘剂条件下粒径分布量/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
40目以上 | 9.91 | 28.95 | 31.21 | 38.93 | 22.89 | 13.22 |
40~60目之间 | 5.16 | 9.78 | 11.73 | 15.85 | 11.26 | 7.72 |
60~80目之间 | 5.63 | 6.57 | 6.84 | 7.28 | 6.34 | 5.96 |
80~100目之间 | 9.52 | 4.32 | 5.11 | 7.92 | 9.91 | 11.72 |
100~120目之间 | 11.84 | 8.69 | 10.31 | 4.93 | 10.83 | 12.03 |
120目以下 | 57.95 | 41.83 | 34.91 | 25.16 | 37.81 | 49.46 |
表5 不同掺量抑尘剂对尘样粒径分布的影响
标准筛目数 | 不同质量掺量抑尘剂条件下粒径分布量/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
40目以上 | 9.91 | 28.95 | 31.21 | 38.93 | 22.89 | 13.22 |
40~60目之间 | 5.16 | 9.78 | 11.73 | 15.85 | 11.26 | 7.72 |
60~80目之间 | 5.63 | 6.57 | 6.84 | 7.28 | 6.34 | 5.96 |
80~100目之间 | 9.52 | 4.32 | 5.11 | 7.92 | 9.91 | 11.72 |
100~120目之间 | 11.84 | 8.69 | 10.31 | 4.93 | 10.83 | 12.03 |
120目以下 | 57.95 | 41.83 | 34.91 | 25.16 | 37.81 | 49.46 |
风速/ m·s-1 | 不同质量掺量抑尘剂样品条件下尘样抑尘率/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
9 | 30.62 | 54.30 | 90.36 | 96.40 | 83.74 | 55.13 |
12 | 5.44 | 24.25 | 37.31 | 66.51 | 45.22 | 30.32 |
15 | 2.30 | 2.53 | 10.43 | 38.39 | 12.34 | 5.14 |
表6 不同风速下的不同掺量抑尘剂样品的尘样抑尘率
风速/ m·s-1 | 不同质量掺量抑尘剂样品条件下尘样抑尘率/% | |||||
---|---|---|---|---|---|---|
0 | 0.5% | 1% | 2% | 3% | 4% | |
9 | 30.62 | 54.30 | 90.36 | 96.40 | 83.74 | 55.13 |
12 | 5.44 | 24.25 | 37.31 | 66.51 | 45.22 | 30.32 |
15 | 2.30 | 2.53 | 10.43 | 38.39 | 12.34 | 5.14 |
1 | SRAM R J, BINKOVA B, DOSTAL M, et al. Health impact of air pollution to children[J]. International Journal of Hygiene and Environmental Health, 2013, 216(5): 533-540. |
2 | 李廷昆, 冯银厂, 毕晓辉, 等. 城市扬尘污染主要成因与精准治尘思路[J]. 环境科学, 2022, 43(3): 1323-1331. |
LI Tingkun, FENG Yinchang, BI Xiaohui, et al. Main problems and refined solutions of urban fugitive dust pollution in China[J]. Environmental Science, 2022, 43(3): 1323-1331. | |
3 | BAO Qiu, NIE Wen, LIU Changqi, et al. The preparation of a novel hydrogel based on crosslinked polymers for suppressing coal dusts[J]. Journal of Cleaner Production, 2020, 249: 119343. |
4 | MA Yunlong, ZHOU Gang, DING Jianfei, et al. Preparation and characterization of an agglomeration-cementing agent for dust suppression in open pit coal mining[J]. Cellulose, 2018, 25(7): 4011-4029. |
5 | 张桂锋. 高吸水树脂的特性及在抑尘领域的应用研究进展[J]. 化学工程师, 2018, 32(3): 46-48. |
ZHANG Guifeng. Characteristics of high power absorbent resin and its application in the field of dust suppression[J]. Chemical Engineer, 2018, 32(3): 46-48. | |
6 | 陈渊, 杨家添, 黄祖强, 等. 机械活化固相化学反应制备木薯醋酸酯淀粉[J]. 食品与发酵工业, 2013, 39(7): 135-141. |
CHEN Yuan, YANG Jiatian, HUANG Zuqiang, et al. Preparation for cassava starch acetate by mechanical activation-strengthened solid phase chemical reaction[J]. Food and Fermentation Industries, 2013, 39(7): 135-141. | |
7 | 陈渊, 杨家添, 谢秋季, 等. 木薯羧甲基淀粉的机械活化固相化学法制备、表征及其特性[J]. 食品科学, 2018, 39(2): 45-52. |
CHEN Yuan, YANG Jiatian, XIE Qiuji, et al. Preparation, structural characterization and properties of carboxymethyl cassava starch by mechanical activation-assisted solid-state reaction[J]. Food Science, 2018, 39(2): 45-52. | |
8 | 郭庆兴, 童群义. 交联羟丙基羧甲基木薯淀粉性质的研究[J]. 食品工业科技, 2012, 33(23): 122-124, 128. |
GUO Qingxing, TONG Qunyi. Study on properties of cross-linking hydroxypropyl carboxymethyl starch[J]. Science and Technology of Food Industry, 2012, 33(23): 122-124, 128. | |
9 | 郭雅妮, 李金成, 惠璠, 等. 超声辅助法制备风化煤腐植酸-丙烯酸吸水树脂[J]. 功能材料, 2020, 51(4): 4164-4169. |
GUO Yani, LI Jincheng, HUI Fan, et al. Preparation of humic acid-acrylic acid absorbent resin from weathered coal by ultrasonic-assisted method[J]. Journal of Functional Materials, 2020, 51(4): 4164-4169. | |
10 | 舒陈华, 陈爽. 淀粉与丙烯酸接枝共聚反应的研究[J]. 五邑大学学报(自然科学版), 2006, 20(2): 67-70, 78. |
SHU Chenhua, CHEN Shuang. A study of graft polymerization of acrylic acid and starch[J]. Journal of Wuyi University (Natural Science Edition), 2006, 20(2): 67-70, 78. | |
11 | 于栋. 低温调堵剂淀粉接枝聚丙烯酰胺的合成及评价[D]. 东营: 中国石油大学(华东), 2013: 17. |
YU Dong. The synthesis and evaluation of low temperature profile control and water shutoff agent starch grafted polyacrylamide[D]. Dongying: China University of Petroleum (Huadong), 2013: 17. | |
12 | 李云涛. 不同配比高倍吸水树脂抑尘剂抑尘效果研究[J]. 西部交通科技, 2008(2): 97-100. |
LI Yuntao. Research on the dust control effect of high-power water absorbing resin dust depressors of different mixture ratios[J]. Western China Communications Science & Technology, 2008(2): 97-100. | |
13 | 白向兵. 新型抑尘剂的合成与应用研究——以西安市为例[D]. 西安: 长安大学, 2006: 59-60. |
BAI Xiangbing. Study on synthesis and application of the new dust-depressor—Taking Xi’an city as an example[D]. Xi’an: Changan University, 2006: 59-60. | |
14 | SUN Jian, ZHOU Gang, GAO Danhong, et al. Preparation and performance characterization of a composite dust suppressant for preventing secondary dust in underground mine roadways[J]. Chemical Engineering Research and Design, 2020, 156: 195-208. |
15 | 黄祖强, 陈渊, 梁兴唐, 等. 机械活化对木薯淀粉的直链淀粉含量及抗性淀粉形成的影响[J]. 高校化学工程学报, 2007, 21(3): 471-476. |
HUANG Zuqiang, CHEN Yuan, LIANG Xingtang, et al. Effects of mechanical activation on amylose content and resistant starch formation of cassava starch[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(3): 471-476. | |
16 | 谭义秋, 黄祖强, 农克良. 高取代度木薯羧甲基淀粉的合成及表征[J]. 过程工程学报, 2010, 10(1): 173-178. |
TAN Yiqiu, HUANG Zuqiang, NONG Keliang. Synthesis and characterization of high degree of substitution cassava carboxymethyl starch[J]. The Chinese Journal of Process Engineering, 2010, 10(1): 173-178. | |
17 | 王宇. 咖啡壳纤维素接枝丙烯酸合成高吸水树脂的研究[D]. 昆明: 昆明理工大学, 2017: 51-52. |
WANG Yu. Study on synthesis of super absorbent resin by graft acrylic acid from cellulose in coffee shell[D]. Kunming: Kunming University of Science and Technology, 2017: 51-52. | |
18 | 韩明迪. 氧化淀粉接枝丙烯酸丙烯酰胺抑尘剂的合成与应用研究[D]. 北京: 北京化工大学, 2009: 29. |
HAN Mingdi. Synthesis and application of graft copolymer of oxidized starch with acrylic acid an acrylamide[D]. Beijing: Beijing University of Chemical Technology, 2009: 29. | |
19 | 赵月. 淀粉复合丙烯酸制备耐盐型高吸水树脂的工艺研究[D]. 沈阳: 沈阳化工大学, 2018: 34. |
ZHAO Yue. Study on preparation of salt resistant super absorbent resin by starch composite acrylic acid[D]. Shenyang: Shenyang University of Chemical Technology, 2018: 34. | |
20 | 陈利维, 陈慧, 戴睿, 等. 碱溶解玉米淀粉制备高吸水性树脂[J]. 精细化工, 2019, 36(10): 2109-2115. |
CHEN Liwei, CHEN Hui, DAI Rui, et al. Preparation of superabsorbent polymers by dissolving corn starch with alkali[J]. Fine Chemicals, 2019, 36(10): 2109-2115. | |
21 | 田光磊. 丙烯酸系高吸水树脂微球的制备及性能研究[D]. 广州: 仲恺农业工程学院, 2016: 34. |
TIAN Guanglei. Studies on the preparation and properties of acrylic acid superabsorbent polymer microspheres[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2016: 34. | |
22 | 吴景梅, 张毅, 陶冬平. 淀粉接枝丙烯酸-丙烯酰胺三元共聚物的制备与性能研究[J]. 商丘师范学院学报, 2018, 34(3): 26-29. |
WU Jingmei, ZHANG Yi, TAO Dongping. Preparation and properties of copolymer by starch grafting acrylic acid and acrylamide[J]. Journal of Shangqiu Normal University, 2018, 34(3): 26-29. | |
23 | 李林, 黄小华. 丙烯酸接枝淀粉的制备及其印花性能[J]. 纺织学报, 2013, 34(3): 93-97. |
LI Lin, HUANG Xiaohua. Preparation and printing properties of acrylic acid grafted starch[J]. Journal of Textile Research, 2013, 34(3): 93-97. | |
24 | SHI Linfan, ZHONG Li, ZHANG Bin, et al. Encapsulation and release characteristics of ethylene gas from V6-and V7-type crystalline starches[J]. International Journal of Biological Macromolecules, 2020, 156: 10-17. |
25 | 郭武, 谢忠杰. 高倍吸水树脂对抑制粉尘污染的研究[J]. 湖南安全与防灾, 2013(3): 48-49. |
GUO Wu, XIE Zhongjie. Study on dust pollution control by high power water absorbent resin[J]. Hunan Safety and Disaster Prevention, 2013(3): 48-49. |
[1] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[2] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[3] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[4] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[5] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[6] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[7] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[8] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[9] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[10] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[11] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[12] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[13] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[14] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[15] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |