化工进展 ›› 2023, Vol. 42 ›› Issue (6): 2799-2808.DOI: 10.16085/j.issn.1000-6613.2022-1457
收稿日期:
2022-08-04
修回日期:
2022-10-18
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
董亚超
作者简介:
顾诗亚(2000—),女,硕士研究生,研究方向为过程系统工程。E-mail:gsy0617@mail.dlut.edu.cn。
GU Shiya(), DONG Yachao(), LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian
Received:
2022-08-04
Revised:
2022-10-18
Online:
2023-06-25
Published:
2023-06-29
Contact:
DONG Yachao
摘要:
作为控制温室气体排放的重要技术之一,碳捕集与封存技术吸引了越来越多的关注。相比于传统生产系统,碳捕集与封存系统中的二氧化碳排放源与封存阱往往相距较远,妥善合理地规划两者之间二氧化碳的运输方式是确保系统高效运转的重要前提。而管道运输正是目前长距离、大规模输送二氧化碳最经济的方法。本文首先建立碳捕集中管路系统的数学模型;然后针对单周期问题,为使管路系统的项目总成本最小,分别得到不同碳捕集封存量要求下,无中间节点和有中间节点管路系统的最佳管网结构,并分析碳排放量变化对管路系统的影响;最后针对多周期问题,考虑在一个较长的项目规划期内,管路系统的总捕集封存量最大和项目总成本最小两种情景下,分别探究排放源的碳排放量、封存阱的封存容量和注入速率对有中间节点管路系统的管网结构、项目总成本以及源阱利用情况的影响。
中图分类号:
顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808.
GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808.
编号 | 排放量/kg·s-1 | 封存容量/Mt | 经度/(°) | 纬度/(°) | x坐标/m | y坐标/m |
---|---|---|---|---|---|---|
a1 | 62.5 | — | 123.35 | 42.75 | 528655 | 4735007 |
a2 | 62.5 | — | 123.01 | 39.68 | 500858 | 4393999 |
a3 | 98.96 | — | 123.97 | 41.91 | 580484 | 4641727 |
a4 | 67.71 | — | 124.34 | 40.08 | 614303 | 4438717 |
a5 | 31.25 | — | 121.22 | 41.14 | 350553 | 4557649 |
a6 | 130.21 | — | 122.20 | 40.61 | 431874 | 4497575 |
a7 | 36.46 | — | 121.66 | 42.00 | 388979 | 4652506 |
a8 | 31.25 | — | 123.22 | 41.36 | 518409 | 4580577 |
a9 | 187.5 | — | 123.98 | 42.45 | 580194 | 4701540 |
a10 | 31.25 | — | 122.14 | 41.14 | 427797 | 4556478 |
a11 | 36.46 | — | 123.81 | 41.35 | 567788 | 4579760 |
a12 | 67.71 | — | 123.46 | 41.75 | 537842 | 4623986 |
a13 | 67.71 | — | 120.37 | 41.51 | 280005 | 4600569 |
a14 | — | 824.21 | 121.59 | 40.95 | 381278 | 4535978 |
a15 | — | 448.29 | 121.95 | 41.10 | 411376 | 4552216 |
a16 | — | 123.7 | 123.13 | 41.98 | 510774 | 4649424 |
a17 | — | 213.85 | 122.81 | 42.08 | 484282 | 4659987 |
a18 | — | 56.53 | 122.92 | 41.78 | 493349 | 4627204 |
a19 | — | — | 122.74 | 40.84 | 490545 | 4511684 |
a20 | — | — | 123.63 | 40.84 | 591236 | 4511684 |
a21 | — | — | 120.91 | 42.03 | 389854 | 4601321 |
a22 | — | — | 122.73 | 42.05 | 490545 | 4601321 |
表1 源、阱及中间节点信息
编号 | 排放量/kg·s-1 | 封存容量/Mt | 经度/(°) | 纬度/(°) | x坐标/m | y坐标/m |
---|---|---|---|---|---|---|
a1 | 62.5 | — | 123.35 | 42.75 | 528655 | 4735007 |
a2 | 62.5 | — | 123.01 | 39.68 | 500858 | 4393999 |
a3 | 98.96 | — | 123.97 | 41.91 | 580484 | 4641727 |
a4 | 67.71 | — | 124.34 | 40.08 | 614303 | 4438717 |
a5 | 31.25 | — | 121.22 | 41.14 | 350553 | 4557649 |
a6 | 130.21 | — | 122.20 | 40.61 | 431874 | 4497575 |
a7 | 36.46 | — | 121.66 | 42.00 | 388979 | 4652506 |
a8 | 31.25 | — | 123.22 | 41.36 | 518409 | 4580577 |
a9 | 187.5 | — | 123.98 | 42.45 | 580194 | 4701540 |
a10 | 31.25 | — | 122.14 | 41.14 | 427797 | 4556478 |
a11 | 36.46 | — | 123.81 | 41.35 | 567788 | 4579760 |
a12 | 67.71 | — | 123.46 | 41.75 | 537842 | 4623986 |
a13 | 67.71 | — | 120.37 | 41.51 | 280005 | 4600569 |
a14 | — | 824.21 | 121.59 | 40.95 | 381278 | 4535978 |
a15 | — | 448.29 | 121.95 | 41.10 | 411376 | 4552216 |
a16 | — | 123.7 | 123.13 | 41.98 | 510774 | 4649424 |
a17 | — | 213.85 | 122.81 | 42.08 | 484282 | 4659987 |
a18 | — | 56.53 | 122.92 | 41.78 | 493349 | 4627204 |
a19 | — | — | 122.74 | 40.84 | 490545 | 4511684 |
a20 | — | — | 123.63 | 40.84 | 591236 | 4511684 |
a21 | — | — | 120.91 | 42.03 | 389854 | 4601321 |
a22 | — | — | 122.73 | 42.05 | 490545 | 4601321 |
管路系统类型 | 捕集量要求 | 变量 个数 | 约束 个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 346 (216) | 572 | 0.253 | 232 |
有总捕集封存量要求 | 0.382 | 463 | |||
有源捕集封存量要求 | 0.422 | 601 | |||
有中间节点 | 无捕集封存量要求 | 762 (476) | 1244 | 0.406 | 2132 |
有总捕集封存量要求 | 0.765 | 3206 | |||
有源捕集封存量要求 | 1.985 | 15629 |
表2 单周期模型求解情况
管路系统类型 | 捕集量要求 | 变量 个数 | 约束 个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 346 (216) | 572 | 0.253 | 232 |
有总捕集封存量要求 | 0.382 | 463 | |||
有源捕集封存量要求 | 0.422 | 601 | |||
有中间节点 | 无捕集封存量要求 | 762 (476) | 1244 | 0.406 | 2132 |
有总捕集封存量要求 | 0.765 | 3206 | |||
有源捕集封存量要求 | 1.985 | 15629 |
捕集量要求 | 无捕集封存量 要求 | 有总捕集封存量要求 | 有源捕集封存量要求 |
---|---|---|---|
1~17 | 6.25 | 13.00 | 25.00 |
2~15 | 6.25 | 13.00 | 25.00 |
3~16 | 9.90 | 21.79 | 39.24 |
4~18 | 6.77 | 13.54 | 27.08 |
5~14 | 3.13 | 7.50 | 12.20 |
6~15 | 13.02 | 25.04 | 52.08 |
7~17 | 3.65 | 7.29 | 16.00 |
8~18 | 3.13 | 6.75 | 12.20 |
9~16 | 18.75 | 37.50 | 75.00 |
10~15 | 3.13 | 6.75 | 12.20 |
11~18 | 3.65 | 7.50 | 15.79 |
12~16 | 6.77 | 13.54 | 27.08 |
13~14 | 6.77 | 13.54 | 27.08 |
表3 三种情景下无中间节点管路系统的最优设计中各管道内CO2的质量流量单位:kg/s
捕集量要求 | 无捕集封存量 要求 | 有总捕集封存量要求 | 有源捕集封存量要求 |
---|---|---|---|
1~17 | 6.25 | 13.00 | 25.00 |
2~15 | 6.25 | 13.00 | 25.00 |
3~16 | 9.90 | 21.79 | 39.24 |
4~18 | 6.77 | 13.54 | 27.08 |
5~14 | 3.13 | 7.50 | 12.20 |
6~15 | 13.02 | 25.04 | 52.08 |
7~17 | 3.65 | 7.29 | 16.00 |
8~18 | 3.13 | 6.75 | 12.20 |
9~16 | 18.75 | 37.50 | 75.00 |
10~15 | 3.13 | 6.75 | 12.20 |
11~18 | 3.65 | 7.50 | 15.79 |
12~16 | 6.77 | 13.54 | 27.08 |
13~14 | 6.77 | 13.54 | 27.08 |
管路系统类型 | 捕集量要求 | 管道固定成本/108CNY | 占比/% | 运输成本/108CNY·a-1 | 占比/% | 总成本/108CNY | 约当年均成本/108CNY·a-1 |
---|---|---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 3.00 | 24.24 | 0.94 | 75.76 | 12.38 | 1.30 |
有总捕集封存量要求 | 3.00 | 23.64 | 0.97(3.19%) | 76.36 | 12.69(2.50%) | 1.33 | |
有源捕集封存量要求 | 3.00 | 23.01 | 1.00(6.38%) | 76.99 | 13.05(5.41%) | 1.37 | |
有中间节点 | 无捕集封存量要求 | 2.97 | 26.15 | 0.84 | 73.85 | 11.34 | 1.20 |
有总捕集封存量要求 | 3.14(5.72%) | 25.97 | 0.89(5.95%) | 74.03 | 12.08(6.53%) | 1.28 | |
有源捕集封存量要求 | 3.27(10.10%) | 25.50 | 0.95(13.10%) | 74.50 | 12.82(13.05%) | 1.35 |
表4 三种情景下两类管路系统最优设计的项目成本明细
管路系统类型 | 捕集量要求 | 管道固定成本/108CNY | 占比/% | 运输成本/108CNY·a-1 | 占比/% | 总成本/108CNY | 约当年均成本/108CNY·a-1 |
---|---|---|---|---|---|---|---|
无中间节点 | 无捕集封存量要求 | 3.00 | 24.24 | 0.94 | 75.76 | 12.38 | 1.30 |
有总捕集封存量要求 | 3.00 | 23.64 | 0.97(3.19%) | 76.36 | 12.69(2.50%) | 1.33 | |
有源捕集封存量要求 | 3.00 | 23.01 | 1.00(6.38%) | 76.99 | 13.05(5.41%) | 1.37 | |
有中间节点 | 无捕集封存量要求 | 2.97 | 26.15 | 0.84 | 73.85 | 11.34 | 1.20 |
有总捕集封存量要求 | 3.14(5.72%) | 25.97 | 0.89(5.95%) | 74.03 | 12.08(6.53%) | 1.28 | |
有源捕集封存量要求 | 3.27(10.10%) | 25.50 | 0.95(13.10%) | 74.50 | 12.82(13.05%) | 1.35 |
目标 | 变量个数 | 约束个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|
总捕集封存量最大 | 3234(2090) | 5154 | 29.688 | 44321 |
项目总成本最小 | 3321(2177) | 5237 | 37.078 | 51454 |
表5 多周期模型求解情况
目标 | 变量个数 | 约束个数 | 求解时间/s | 迭代次数/次 |
---|---|---|---|---|
总捕集封存量最大 | 3234(2090) | 5154 | 29.688 | 44321 |
项目总成本最小 | 3321(2177) | 5237 | 37.078 | 51454 |
情景 | t1 | t2 | t3 | t4 |
---|---|---|---|---|
总捕集封存量最大 | 1451 | 1468 | 870 | 322 |
项目总成本最小 | 1386 | 1289 | 829 | 145 |
表6 不同情境下管路系统的管道总长度对比单位:km
情景 | t1 | t2 | t3 | t4 |
---|---|---|---|---|
总捕集封存量最大 | 1451 | 1468 | 870 | 322 |
项目总成本最小 | 1386 | 1289 | 829 | 145 |
目标函数 | 周期 | 管道固定成本/108CNY | 运输成本/108CNY·a-1 | 每个周期成本/108CNY | 捕集封存量/Mt | 单位捕集封存成本/108CNY·Mt-1 |
---|---|---|---|---|---|---|
总捕集封存量最大 | t1 | 3.99 | 1.66 | 12.28 | 131.25 | 0.09 |
t2 | 0 | 1.41 | 7.03 | 96.82 | 0.07 | |
t3 | 0 | 1.25 | 6.26 | 55.12 | 0.11 | |
t4 | 0 | 0.79 | 3.97 | 8.97 | 0.44 | |
汇总 | 3.99 | — | 29.54 | 292.16 | 0.10 | |
项目总成本最小 | t1 | 3.39 | 1.30 | 9.88 | 95.70 | 0.10 |
t2 | 0 | 1.28 | 6.39 | 81.45 | 0.08 | |
t3 | 0 | 1.20 | 5.98 | 55.12 | 0.11 | |
t4 | 0.23 | 0.65 | 3.48 | 8.97 | 0.39 | |
汇总 | 3.62 | — | 25.73 | 241.24 | 0.11 |
表7 项目成本明细及捕集封存情况
目标函数 | 周期 | 管道固定成本/108CNY | 运输成本/108CNY·a-1 | 每个周期成本/108CNY | 捕集封存量/Mt | 单位捕集封存成本/108CNY·Mt-1 |
---|---|---|---|---|---|---|
总捕集封存量最大 | t1 | 3.99 | 1.66 | 12.28 | 131.25 | 0.09 |
t2 | 0 | 1.41 | 7.03 | 96.82 | 0.07 | |
t3 | 0 | 1.25 | 6.26 | 55.12 | 0.11 | |
t4 | 0 | 0.79 | 3.97 | 8.97 | 0.44 | |
汇总 | 3.99 | — | 29.54 | 292.16 | 0.10 | |
项目总成本最小 | t1 | 3.39 | 1.30 | 9.88 | 95.70 | 0.10 |
t2 | 0 | 1.28 | 6.39 | 81.45 | 0.08 | |
t3 | 0 | 1.20 | 5.98 | 55.12 | 0.11 | |
t4 | 0.23 | 0.65 | 3.48 | 8.97 | 0.39 | |
汇总 | 3.62 | — | 25.73 | 241.24 | 0.11 |
1 | FORTUNATO Andrés, HERWARTZ Helmut, LÓPEZ Ramón E, et al. Carbon dioxide atmospheric concentration and hydrometeorological disasters[J]. Natural Hazards, 2022, 112(1): 57-74. |
2 | PENG Xu, TAO Xiaoma, ZHANG Hao, et al. CO2 emissions from the electricity sector during China’s economic transition: From the production to the consumption perspective[J]. Sustainable Production and Consumption, 2021, 27: 1010-1020. |
3 | 张帅. 基于超结构的碳捕集与封存网络综合研究[D]. 大连: 大连理工大学, 2021. |
ZHANG Shuai. Research on superstructure based carbon capture and storage network synthesis[D]. Dalian: Dalian University of Technology, 2021. | |
4 | NOCITO Francesco, DIBENEDETTO Angela. Atmospheric CO2 mitigation technologies: Carbon capture utilization and storage[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21: 34-43. |
5 | Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
6 | ZHANG Shuai, ZHUANG Yu, LIU Linlin, et al. Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109280. |
7 | 孙亮, 陈文颖. 基于GAMS的CCUS源汇匹配动态规划模型[J]. 清华大学学报(自然科学版), 2013, 53(4): 421-426. |
SUN Liang, CHEN Wenying. CCUS source-sink matching dynamic programming model based on GAMS[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4): 421-426. | |
8 | 孙亮, 陈文颖. 中国大陆CCUS源汇静态匹配管网布局[J]. 清华大学学报(自然科学版), 2015, 55(6): 678-683. |
SUN Liang, CHEN Wenying. Pipeline networks for CCUS by static programming in the Chinese Mainland[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(6): 678-683. | |
9 | 高华. 全球碳捕捉与封存(CCS)技术现状及应用前景[J]. 煤炭经济研究, 2020, 40(5): 33-38. |
GAO Hua. Research on global CCS technology status and application prospect[J]. Coal Economic Research, 2020, 40(5): 33-38. | |
10 | ZHANG Z X, WANG G X, MASSAROTTO P, et al. Optimization of pipeline transport for CO2 sequestration[J]. Energy Conversion and Management, 2006, 47(6): 702-715. |
11 | WAREING Christopher J, FAIRWEATHER Michael, FALLE Samuel A E G, et al. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications—Part I. Validation[J]. International Journal of Greenhouse Gas Control, 2015, 42: 701-711. |
12 | 陈兵, 房启超, 白世星. 含杂质超临界CO2输送管道的停输影响因素[J]. 天然气化工(C1化学与化工), 2020, 45(3): 84-89. |
CHEN Bing, FANG Qichao, BAI Shixing. Research on the factors influencing the shutdown of the transport pipeline of supercritical CO2 containing impurities[J]. Natural Gas Chemical Industry, 2020, 45(3): 84-89. | |
13 | VANDEGINSTE V, PIESSENS K. Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle[J]. International Journal of Greenhouse Gas Control, 2008, 2(4): 571-581. |
14 | WANG Z, FIMBRES WEIHS G A, CARDENAS G I, et al. Optimal pipeline design for CCS projects with anticipated increasing CO2 flow rates[J]. International Journal of Greenhouse Gas Control, 2014, 31: 165-174. |
15 | MCCOY Sean T, RUBIN Edward S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 219-229. |
16 | ZHANG Dongjie, WANG Zhe, SUN Jining, et al. Economic evaluation of CO2 pipeline transport in China[J]. Energy Conversion and Management, 2012, 55: 127-135. |
17 | 赵青. 含杂质CO2不同相态管输节流及减压特性研究[D]. 东营: 中国石油大学(华东), 2015. |
ZHAO Qing. Throttling process and decompression property for pipeline transportation of anthropogenic CO2 in different phase[D]. Dongying: China University of Petroleum (Huadong), 2015. | |
18 | KILGALLON R, GILFILLAN S M V, HASZELDINE R S, et al. Odourisation of CO2 pipelines in the UK: Historical and current impacts of smell during gas transport[J]. International Journal of Greenhouse Gas Control, 2015, 37: 504-512. |
19 | 宁雯宇, 陈磊, 韩喜龙, 等. CO2管道输送技术现状研究[J]. 当代化工, 2014, 43(7): 1280-1282. |
NING Wenyu, CHEN Lei, HAN Xilong, et al. Research situation of the CO2 pipeline transportation technology[J]. Contemporary Chemical Industry, 2014, 43(7): 1280-1282. | |
20 | 李昕. 二氧化碳输送管道关键技术研究现状[J]. 油气储运, 2013, 32(4): 343-348. |
LI Xin. Status of key technology research on carbon dioxide pipeline[J]. Oil & Gas Storage and Transportation, 2013, 32(4): 343-348. | |
21 | KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Uncertainties in risk assessment of CO2 pipelines[J]. Energy Procedia, 2009, 1(1): 1587-1594. |
22 | VIANELLO Chiara, MOCELLIN Paolo, MACCHIETTO Sandro, et al. Risk assessment in a hypothetical network pipeline in UK transporting carbon dioxide[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 515-527. |
23 | KNOOPE M M J, GUIJT W, RAMÍREZ A, et al. Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks[J]. International Journal of Greenhouse Gas Control, 2014, 22: 25-46. |
24 | LUO Xiaobo, WANG Meihong, Eni OKO, et al. Simulation-based techno-economic evaluation for optimal design of CO2 transport pipeline network[J]. Applied Energy, 2014, 132: 610-620. |
25 | KAZMIERCZAK Tomasz, BRANDSMA Ruut, NEELE Filip, et al. Algorithm to create a CCS low-cost pipeline network[J]. Energy Procedia, 2009, 1(1): 1617-1623. |
26 | FIMBRES WEIHS G A, WILEY D E, HO M. Steady-state optimisation of CCS pipeline networks for cases with multiple emission sources and injection sites: south-east Queensland case study[J]. Energy Procedia, 2011, 4: 2748-2755. |
27 | FIMBRES WEIHS G A, WILEY D E. Steady-state design of CO2 pipeline networks for minimal cost per tonne of CO2 avoided[J]. International Journal of Greenhouse Gas Control, 2012, 8: 150-168. |
28 | TAN Raymond R, AVISO Kathleen B, BANDYOPADHYAY Santanu, et al. Optimal source-sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints[J]. Environmental Progress & Sustainable Energy, 2013, 32(2): 411-416. |
29 | ELAHI Nasim, SHAH Nilay, KORRE Anna, et al. Multi-period least cost optimisation model of an integrated carbon dioxide capture transportation and storage infrastructure in the UK[J]. Energy Procedia, 2014, 63: 2655-2662. |
30 | ZHOU Chengchuan, LIU Pei, LI Zheng. A superstructure-based mixed-integer programming approach to optimal design of pipeline network for large-scale CO2 transport[J]. AIChE Journal, 2014, 60(7): 2442-2461. |
31 | ZHANG Shuai, ZHUANG Yu, LIU Linlin, et al. Optimization-based approach for CO2 utilization in carbon capture, utilization and storage supply chain[J]. Computers & Chemical Engineering, 2020, 139: 106885. |
32 | FOX R W, MCDONALD R T. Introduction to fluid mechanics[M]. New York: John Wiley & Sons, 1973. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[3] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[4] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[5] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[6] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[7] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[11] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[12] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[13] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[14] | 林海, 王彧斐. 考虑噪声约束的分布式风场布局优化[J]. 化工进展, 2023, 42(7): 3394-3403. |
[15] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |