化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1860-1868.DOI: 10.16085/j.issn.1000-6613.2022-1007
殷铭1,2(), 郭晋1,3, 庞纪峰1,2(), 吴鹏飞1, 郑明远1()
收稿日期:
2022-05-30
修回日期:
2022-10-22
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
庞纪峰,郑明远
作者简介:
殷铭(1995—),男,硕士研究生,研究方向为乙醇催化转化。E-mail:yincoming@dicp.ac.cn。
基金资助:
YIN Ming1,2(), GUO Jin1,3, PANG Jifeng1,2(), WU Pengfei1, ZHENG Mingyuan1()
Received:
2022-05-30
Revised:
2022-10-22
Online:
2023-04-25
Published:
2023-05-08
Contact:
PANG Jifeng, ZHENG Mingyuan
摘要:
铜基催化剂对C
中图分类号:
殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868.
YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868.
图7 0.1Pt10Cu/Al2O3单原子催化剂的HAADF-STEM图[(a),Pt以单原子形式分散在Cu晶面];(a)图的放大区域照片和颜色差异图(b,c);Pt单原子在Cu (~2.1 nm)颗粒上的稳定性[(d),暗红色为Pt原子的稳定位];10Cu/Al2O3催化剂的HAADF-STEM图[(e),标尺为1nm][79]
1 | OJHA N K, ZYRYANOV G V, MAJEE A, et al. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis[J]. Coordination Chemistry Reviews, 2017, 353: 1-57. |
2 | GAWANDE M B, GOSWAMI A, FELPIN F, et al. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis[J]. Chemical Reviews, 2016, 116(6): 3722-3811. |
3 | YE Runping, LIN Ling, LI Qiaohong, et al. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon-oxygen bonds[J]. Catalysis Science & Technology, 2018, 8(14): 3428-3449. |
4 | 张卿源, 舒静. 铜基催化剂的失活再生研究进展[J]. 化工科技, 2019, 27(3): 65-69. |
ZHANG Qingyuan, SHU Jing. Progress in deactivation and regeneration of Cu based catalysts[J]. Science & Technology in Chemical Industry, 2019, 27(3): 65-69. | |
5 | BARTHOLOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1/2): 17-60. |
6 | BARTHOLOMEW C H, ARGYLE M D. Advances in catalyst deactivation and regeneration[J]. Catalysts, 2015, 5(2): 949-954. |
7 | FROMENT G F. Modeling of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1/2): 117-128. |
8 | CAO Anmin, LU Rongwen, Götz VESER. Stabilizing metal nanoparticles for heterogeneous catalysis[J]. Physical Chemistry Chemical Physics, 2010, 12(41): 13499-13510. |
9 | BUFFAT P, BOREL J P. Size effect on the melting temperature of gold particles[J]. Physical Review A, 1976, 13(6): 2287-2298. |
10 | OUYANG Runhai, LIU Jinxun, LI Weixue. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. Journal of the American Chemical Society, 2013, 135(5): 1760-1771. |
11 | HU Sulei, LI Weixue. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science, 2021, 374(6573): 1360-1365. |
12 | 张博, 张素华, 惠胜国, 等. 草酸二甲酯加氢制乙二醇Cu/SiO2催化剂失活机理的研究[J]. 天然气化工(C1化学与化工), 2012, 37(4): 1-6. |
ZHANG Bo, ZHANG Suhua, HUI Shengguo, et al. Study on deactivation mechanism of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Natural Gas Chemical Industry, 2012, 37(4): 1-6. | |
13 | ZHENG Jianwei, ZHOU Junfu, LIN Haiqiang, et al. CO-mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13758-13766. |
14 | CHEN Zheng, GE Hui, WANG Pengfei, et al. Insight into the deactivation mechanism of water on active Cu species for ester hydrogenation: Experimental and theoretical study[J]. Molecular Catalysis, 2020, 488: 110919. |
15 | DING Jie, POPA Tiberiu, TANG Jinke, et al. Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol[J]. Applied Catalysis B: Environmental, 2017, 209: 530-542. |
16 | 陈明旭, 梅占强, 陈柯臻, 等. Cu基催化剂催化甲醇水蒸气重整制氢研究进展[J]. 石油化工, 2017, 46(12): 1536-1541. |
CHEN Mingxu, MEI Zhanqiang, CHEN Kezheng, et al. The research development of methanol steam reforming for hydrogen production on copper based catalyst[J]. PetrochemicaL Technology, 2017, 46(12): 1536-1541. | |
17 | MESILOV V, DAHLIN S, BERGMAN S L, et al. Insights into sulfur poisoning and regeneration of Cu-SSZ-13 catalysts: in situ Cu and S K-edge XAS studies[J]. Catalysis Science & Technology, 2021, 11(16): 5619-5632. |
18 | BEALE A M, GIBSON E K, O'BRIEN M G, et al. Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies[J]. Journal of Catalysis, 2014, 314: 94-100. |
19 | TWIGG Martyn V, SPENCER M S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Applied Catalysis A: General, 2001, 212(1): 161-174. |
20 | 李胜军. 草酸二甲酯加氢制乙二醇Cu/SiO2催化剂粉化原因浅析[J]. 河南化工, 2017, 34(4): 44-46. |
LI Shengjun. Analysis on the chalking of Cu/SiO2 catlysts for hydrogeaniton of dimethylxoaiate to ethylene glcyol[J]. Henan Chemical Industry, 2017, 34(4): 44-46. | |
21 | WANG Lingxiang, WANG Liang, MENG Xiangju, et al. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Advanced Materials, 2019, 31(50): 1901905. |
22 | TOUPANCE Thierry, KERMAREC Maggy, LAMBERT Jean-François, et al. Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption[J]. Journal of Physical Chemistry B, 2002, 106(9): 2277-2286. |
23 | LIN Haiqiang, ZHENG Xinlei, HE Zhe, et al. Cu/SiO2 hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Applied Catalysis A: General, 2012, 445: 287-296. |
24 | ZHU Shanhui, GAO Xiaoqing, ZHU Yulei, et al. A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol[J]. Catalysis Science & Technology, 2015, 5(2): 1169-1180. |
25 | WANG Zhiqiao, XU Zhongning, PENG Siyan, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
26 | PANG Jifeng, ZHENG Mingyuan, WANG Chan, et al. Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation[J]. ACS Catalysis, 2020, 10(22): 13624-13629. |
27 | GONG Jinlong, YUE Hairong, ZHAO Yujun, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925. |
28 | YUE Hairong, ZHAO Yujun, ZHAO Shuo, et al. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nature Communications, 2013, 4(1): 2339. |
29 | YUE Hairong, MA Xinbin, GONG Jinlong. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol[J]. Accounts of Chemical Research, 2014, 47(5): 1483-1492. |
30 | JIN R, EASA J, O'BRIEN C P. Highly active CuO x /SiO2 dot core/rod shell catalysts with enhanced stability for the reverse water gas shift reaction[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38213-38220. |
31 | XU Chaofa, CHEN Guangxu, ZHAO Yun, et al. Interfacing with silica boosts the catalysis of copper[J]. Nature Communications, 2018, 9(1): 3367. |
32 | FAN Ruoyu, ZHANG Yange, HU Zhi, et al. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation[J]. Nano Research, 2021, 14(12): 4601-4609. |
33 | 贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668. |
JIA Chenxi, SHAO Jing’ai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. | |
34 | BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, et al. Cu-Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction[J]. ACS Catalysis, 2019, 9(7): 6243-6251. |
35 | SHAO Yuewen, WANG Junzhe, DU Huining, et al. Importance of magnesium in Cu-based catalysts for selective conversion of biomass-derived furan compounds to diols[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5217-5228. |
36 | VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nature Catalysis, 2019, 2(11): 955-970. |
37 | 赵鹬, 王世栋, 贠宏飞, 等. 草酸二甲酯加氢反应中铜催化剂稳定性的研究进展[J]. 化工进展, 2018, 37(9): 3393-3400. |
ZHAO Yu, WANG Shidong, YUAN Hongfei, et al. Recent progress on the stabilization of copper catalysts for the hydrogenation of dimethyl oxalate[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3393-3400. | |
38 | ZHAO Shuo, YUE Hairong, ZHAO Yujun, et al. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant[J]. Journal of Catalysis, 2013, 297: 142-150. |
39 | XU Yuxi, KONG Lingxin, HUANG Huijiang, et al. Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catalysis Science & Technology, 2021, 11(20): 6854-6865. |
40 | YE Chenliang, GUO Cuili, ZHANG Jinli. Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol[J]. Fuel Processing Technology, 2016, 143: 219-224. |
41 | YE Chenliang, GUO Cuili, SUN Chengwei, et al. Effect of Mn doping on the activity and stability of Cu-SiO2 catalysts for the hydrogenation of methyl acetate to ethanol[J]. RSC Advances 2016, 6(114): 113796-113802. |
42 | HUANG Jingjing, DING Tong, MA Kui, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem, 2018, 10(17): 3862-3871. |
43 | PU Yunchuan, LI Shuirong, YAN Shuai, et al. An improved Cu/ZnO catalyst promoted by Sc2O3 for hydrogen production from methanol reforming[J]. Fuel, 2019, 241: 607-615. |
44 | SUN Peiyong, WANG Haixing, LUO Xueqing, et al. Sintering-resistant Cu/B/Ca/Al2O3 catalysts for durable hydrogenation of sec-butyl acetate to 2-butanol and ethanol[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 86-95. |
45 | BEERTHUIS R, VISSER N L, HOEVEN J E S, et al. Manganese oxide promoter effects in the copper-catalyzed hydrogenation of ethyl acetate[J]. Journal of Catalysis, 2021, 394: 307-315. |
46 | JIMENEZ-GOMEZ C P, CECILIA J A, DURAN-MARTIN D, et al. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu/ZnO catalysts[J]. Journal of Catalysis, 2016, 336: 107-115. |
47 | JIMENEZ-GOMEZ C P, CECILIA J A, MARQUEZ-RODRIGUEZ I, et al. Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts[J]. Catalysis Today, 2017, 279: 327-338. |
48 | ZHANG Xiaopei, ZHU Xiaobing, LIN Lili, et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction[J]. ACS Catalysis, 2017, 7: 912-918. |
49 | YU Jiafeng, SUN Xingtao, TONG Xin, et al. Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts[J]. Nature Communications, 2021, 12: 7209. |
50 | XIN Yue, YU Kaifu, ZHANG Lantian, et al. Copper-based plasmonic catalysis: Recent advances and future perspectives[J]. Advanced Materials, 2021, 33: 2008145. |
51 | WANG Shenghua, FENG Kai, ZHANG Dake, et al. Stable Cu catalysts supported by two-dimensional SiO2 with strong metal-support interaction[J]. Advanced Science, 2022, 9(9): 2104972. |
52 | OTOR H O, STEINER J B, GARCIA-SANCHO C, et al. Encapsulation methods for control of catalyst deactivation: A review[J]. ACS Catalysis, 2020, 10(14): 7630-7656. |
53 | HUO J, TESSONNIER J, SHANKS B H. Improving hydrothermal stability of supported metal catalysts for biomass conversions: A review[J]. ACS Catalysis, 2021, 11(9): 5248-5270. |
54 | GEORGE S M. Atomic layer deposition: An overview[J]. Chemical Reviews, 2010, 110(1): 111-131. |
55 | ZHANG Bin, QIN Yong. Interface tailoring of heterogeneous catalysts by atomic layer deposition[J]. ACS Catalysis, 2018, 8(11): 10064-10081. |
56 | O'NEILL B J, JACKSON D H K, CRISCI A J, et al. Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition[J]. Angewandte Chemie International Edition, 2013, 52(51): 13808-13812. |
57 | ALBA-RUBIO A C, O’NEILL B J, SHI F, et al. Pore structure and bifunctional catalyst activity of overlayers applied by atomic layer deposition on copper nanoparticles[J]. ACS Catalysis, 2014, 4(5): 1554-1557. |
58 | ZHANG H, LEI Y, KROPF A J, et al. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating[J]. Journal of Catalysis, 2014, 317: 284-292. |
59 | HÉROGUEL F, LE MONNIER B P, BROWN K S, et al. Catalyst stabilization by stoichiometrically limited layer-by-layer overcoating in liquid media[J]. Applied Catalysis B-Environmental, 2017, 218: 643-649. |
60 | HUANG Xiumin, MA Meng, MIAO Shu, et al. Hydrogenation of methyl acetate to ethanol over a highly stable Cu/SiO2 catalyst: Reaction mechanism and structural evolution[J]. Applied Catalysis A-General, 2017, 531: 79-88. |
61 | ZHU Qiufeng, ZHANG Qingcheng, WEN Lixiong. Anti-sintering silica-coating CuZnAlZr catalyst for methanol synthesis from CO hydrogenation[J]. Fuel Processing Technology, 2017, 156: 280-289. |
62 | PACHFULE Pradip, YANG Xinchun, ZHU Qilong, et al. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon[J]. Journal of Materials Chemistry A, 2017, 5(10): 4835-4841. |
63 | LI Bo, MA Jiangong, CHENG Peng. Silica-protection-assisted encapsulation of Cu2O nanocubes into a metal-organic framework (ZIF-8) To provide a composite catalyst[J]. Angewandte Chemie International Edition, 2018, 57(23): 6834-6837. |
64 | CUI Wengang, LI Yanting, YU Lei, et al. Zeolite-encapsulated ultrasmall Cu/ZnO x nanoparticles for the hydrogenation of CO2 to methanol[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18693-18703. |
65 | CUI Wengang, HU Tongliang. Incorporation of active metal species in crystalline porous materials for highly efficient synergetic catalysis[J]. Small, 2021, 17: 2003971. |
66 | DING Liping, SHI Taotao, GU Jing, et al. CO2 hydrogenation to ethanol over Cu@Na-Beta[J]. Chem, 2020, 6(10): 2673-2689. |
67 | LAN Fujun, AARONS Jolyon, SHU Yu, et al. Anchoring strategy for highly active copper nanoclusters in hydrogenation of renewable biomass-derived compounds[J]. Applied Catalysis B: Environmental, 2021, 299: 120651. |
68 | WENG Mingwei, ZHANG Zihao, OKEJIRI Francis, et al. Encapsulation of CuO nanoparticles within silicalite-1 as a regenerative catalyst for transfer hydrogenation of furfural[J]. iScience, 2021, 24(8): 102884. |
69 | CAO Peng, LIN Lu, QI Haifeng, et al. Zeolite-encapsulated Cu nanoparticles for the selective hydrogenation of furfural to furfuryl alcohol[J]. ACS Catalysis, 2021, 11(16): 10246-10256. |
70 | LIN Lu, CAO Peng, PANG Jifeng, et al. Zeolite-encapsulated Cu nanoparticles with enhanced performance for ethanol dehydrogenation[J]. Journal of Catalysis, 2022, 413: 565-574. |
71 | SHENG Haibing, ZHANG Haitao, MA Hongfang, et al. An effective Cu-Ag/HMS bimetallic catalyst for hydrogenation of methyl acetate to ethanol[J]. Catalysis Today, 2020, 358: 122-128. |
72 | LIU Yanting, DING Jian, YANG Jieyong, et al. Stabilization of copper catalysts for hydrogenation of dimethyl oxalate by deposition of Ag clusters on Cu nanoparticles[J]. Catalysis Communications, 2017, 98: 43-46. |
73 | Engtoon SAW, OEMAR Usman, Mingli ANG, et al. Highly active and stable bimetallic nickel-copper core-ceria shell catalyst for high-temperature water-gas shift reaction[J]. ChemCatChem, 2015, 7(20): 3358-3367. |
74 | ZHANG Riguang, LIU Fu, WANG Baojun. Co-decorated Cu alloy catalyst for C2 oxygenate and ethanol formation from syngas on Cu-based catalyst: insight into the role of Co and Cu as well as the improved selectivity[J]. Catalysis Science & Technology, 2016, 6: 8036-8054. |
75 | FREI Elias, GAUR Abhijeet, LICHTENBERG Henning, et al. Cu-Zn alloy formation as unfavored state for efficient methanol catalysts [J]. ChemCatChem, 2020, 12: 4029-4033. |
76 | WANG Zhinuo, YIN Ming, PANG Jifeng, et al. Active and stable Cu doped NiMgAlO catalysts for upgrading ethanol to n-butanol [J]. Journal of Energy Chemistry, 2022, 72: 306-317. |
77 | SHAN Junjun, LIU Jilei, LI Mengwei, et al. NiCu single atom alloys catalyze the C—H bond activation in the selective non-oxidative ethanol dehydrogenation reaction[J]. Applied Catalysis B: Environmental, 2018, 226: 534-543. |
78 | WANG Z, HOYT R A., EL-SODA M, et al. Dry dehydrogenation of ethanol on Pt-Cu single atom alloys[J]. Topics in Catalysis, 2018, 61(5): 328-335. |
79 | SUN Guodong, ZHAO Zhijian, MU Rentao, et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation[J]. Nature Communications, 2018, 9(1): 4454. |
80 | AN Bing, ZHANG Jingzheng, CHENG Kang, et al. Confinement of ultrasmall Cu/ZnO x nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 [J]. Journal of the American Chemical Society, 2017, 139(10): 3834-3840. |
81 | WANG Aiqin, LI Jun, ZHANG Tao. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018, 2(6): 65-81. |
82 | YANG Tang, MAO Xinnan, ZHANG Ying, et al. Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature[J]. Nature Communications, 2021, 12(1): 6022. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[12] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |