化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1629-1637.DOI: 10.16085/j.issn.1000-6613.2022-0893
谢迎春1,2(), 王倩倩2, 马永丽2(), 孙国强1, 刘明言2,3
收稿日期:
2022-05-16
修回日期:
2022-08-28
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
马永丽
作者简介:
谢迎春(1973—),女,博士研究生,研究员级高级工程师,研究方向为能源与环保。E-mail:xieyc01@cnnp.com.cn。
XIE Yingchun1,2(), WANG Qianqian2, MA Yongli2(), SUN Guoqiang1, LIU Mingyan2,3
Received:
2022-05-16
Revised:
2022-08-28
Online:
2023-03-15
Published:
2023-04-10
Contact:
MA Yongli
摘要:
鉴于地热尾水的脱气或杀菌主要是通过脱气罐和杀菌剂进行处理,本文提出了一种超声波-紫外线耦合的脱气杀菌处理技术。采用超声波-紫外线耦合技术对含微气泡含细菌水进行脱气杀菌处理。分别考察了不同水流量下的超声波脱气效率,不同流量、不同紫外线照射强度下的杀菌效率,以及超声波-紫外线耦合之后的脱气杀菌效率。结果表明,在较小水流量下,可除去部分气体;随着流量的增大,水中的气含率基本不变,脱气效果增加不再明显。在一定的紫外线照射强度下,较大流量时,杀菌效率约为90%以上;在较小流量时,杀菌效率为60%~80%。考虑是由于较大流量下,湍动程度相对较高以及停留时间较短所致。与单独超声波脱气相比,耦合技术的脱气效率基本不变,杀菌效率在90%左右,确定最优的实验操作参数为20kHz、0.15m3/h和2000μW/cm2。
中图分类号:
谢迎春, 王倩倩, 马永丽, 孙国强, 刘明言. 超声波与紫外线耦合脱气杀菌[J]. 化工进展, 2023, 42(3): 1629-1637.
XIE Yingchun, WANG Qianqian, MA Yongli, SUN Guoqiang, LIU Mingyan. Ultrasonic and ultraviolet coupling degassing and sterilization[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1629-1637.
流量/m3·h-1 | 紫外线照射强度/μW·cm-2 | 样号 | |
---|---|---|---|
5s | 30s | ||
0.15 | 2000 | 1a | 1b |
4000 | 2a | 2b | |
0.50 | 2000 | 3a | 3b |
4000 | 4a | 4b | |
1.0 | 2000 | 5a | 5b |
4000 | 6a | 6b | |
3.0 | 2000 | 7a | 7b |
4000 | 8a | 8b |
表1 紫外线杀菌实验样号对照表
流量/m3·h-1 | 紫外线照射强度/μW·cm-2 | 样号 | |
---|---|---|---|
5s | 30s | ||
0.15 | 2000 | 1a | 1b |
4000 | 2a | 2b | |
0.50 | 2000 | 3a | 3b |
4000 | 4a | 4b | |
1.0 | 2000 | 5a | 5b |
4000 | 6a | 6b | |
3.0 | 2000 | 7a | 7b |
4000 | 8a | 8b |
流量 /m3·h-1 | 进口含菌量 /个·mL-1 | 样号 | 出口含菌量 /个·mL-1 | 杀菌率 /% |
---|---|---|---|---|
0.15 | 70×101 | 1a | 25×101 | 64.3 |
1b | 25×101 | 64.3 | ||
2a | 0.6×100 | 99.9 | ||
2b | 0×100 | 99.9 | ||
0.50 | 13×100 | 3a | 2.5×100 | 80.8 |
3b | 2.5×100 | 80.8 | ||
4a | 2.5×100 | 80.8 | ||
4b | 0×100 | 99.9 | ||
1.00 | 25×101 | 5a | 2.5×100 | 99.0 |
5b | 0.6×100 | 99.8 | ||
6a | 6×100 | 97.6 | ||
6b | 0.6×100 | 99.8 | ||
3.00 | 25×101 | 7a | 13×100 | 94.8 |
7b | 6×100 | 97.6 | ||
8a | 2.5×100 | 99.0 | ||
8b | 0×100 | 99.9 |
表2 不同水流量紫外线杀菌数据表
流量 /m3·h-1 | 进口含菌量 /个·mL-1 | 样号 | 出口含菌量 /个·mL-1 | 杀菌率 /% |
---|---|---|---|---|
0.15 | 70×101 | 1a | 25×101 | 64.3 |
1b | 25×101 | 64.3 | ||
2a | 0.6×100 | 99.9 | ||
2b | 0×100 | 99.9 | ||
0.50 | 13×100 | 3a | 2.5×100 | 80.8 |
3b | 2.5×100 | 80.8 | ||
4a | 2.5×100 | 80.8 | ||
4b | 0×100 | 99.9 | ||
1.00 | 25×101 | 5a | 2.5×100 | 99.0 |
5b | 0.6×100 | 99.8 | ||
6a | 6×100 | 97.6 | ||
6b | 0.6×100 | 99.8 | ||
3.00 | 25×101 | 7a | 13×100 | 94.8 |
7b | 6×100 | 97.6 | ||
8a | 2.5×100 | 99.0 | ||
8b | 0×100 | 99.9 |
流量/m3·h-1 | 平均停留时间ts/min |
---|---|
0.15 | 42 |
0.50 | 29 |
1.00 | 10 |
3.00 | 5 |
表3 平均停留时间
流量/m3·h-1 | 平均停留时间ts/min |
---|---|
0.15 | 42 |
0.50 | 29 |
1.00 | 10 |
3.00 | 5 |
流量/m3·h-1 | 紫外线剂量/mJ·cm-2 | 样号 | |
---|---|---|---|
5s | 30s | ||
0.15 | 30 | 9a | 9b |
表4 超声波紫外线耦合实验样号对照表
流量/m3·h-1 | 紫外线剂量/mJ·cm-2 | 样号 | |
---|---|---|---|
5s | 30s | ||
0.15 | 30 | 9a | 9b |
流量 /m3·h-1 | 进口含菌量 /个·mL-1 | 样号 | 出口含菌量 /个·mL-1 | 杀菌率 /% |
---|---|---|---|---|
0.15 | 6×100 | 9a | 0.6×100 | 90.0 |
9b | 0×100 | 99.9 |
表5 超声波紫外线耦合实验数据表
流量 /m3·h-1 | 进口含菌量 /个·mL-1 | 样号 | 出口含菌量 /个·mL-1 | 杀菌率 /% |
---|---|---|---|---|
0.15 | 6×100 | 9a | 0.6×100 | 90.0 |
9b | 0×100 | 99.9 |
1 | NITSCHKE Fabian, HELD Sebastian, HIMMELSBACH Thomas, et al. THC simulation of halite scaling in deep geothermal single well production[J]. Geothermics, 2017, 65: 234-243. |
2 | WANG Shufang, LIU Jiurong, SUN Ying, et al. Study on the geothermal production and reinjection mode in Xiong County[J]. Journal of Groundwater Science and Engineering, 2018, 6(3): 178-186. |
3 | 曹倩, 方朝合, 李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺, 2021, 43(2): 203-211. |
CAO Qian, FANG Chaohe, LI Yun, et al. Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(2): 203-211. | |
4 | KAMILA Zahratul, KAYA Eylem, ZARROUK Sadiq J. Reinjection in geothermal fields: An updated worldwide review 2020[J]. Geothermics, 2021, 89: 101970. |
5 | LIU Xiaoyan, LI Jungang, ZHU Qianya, et al. The analysis and prediction of scale accumulation for water-injection pipelines in the Daqing Oilfield[J]. Journal of Petroleum Science and Engineering, 2009, 66(3/4): 161-164. |
6 | 杨永红, 马正孔, 单联生, 等. 碎屑岩孔隙型热储地热尾水高效回灌思路探讨[J]. 中国石油大学胜利学院学报, 2020, 34(2): 1-4. |
YANG Yonghong, MA Zhengkong, SHAN Liansheng, et al. Thoughts on way to high efficiency recharge of geothermal tail water for porous medium reservoirs in clastic rocks[J]. Journal of Shengli College China University of Petroleum, 2020, 34(2): 1-4. | |
7 | 李慧莉, 康晶, 佟娟, 等. 地热尾水回灌堵塞机制研究进展[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 天津, 2021: 789-797. |
LI Huili, KANG Jing, TONG Juan, et al. State-of-art on clogging mechanism of geothermal tall-water reinjection[C]// The 2021 Science and Technology Annual Conference of the Chinese Society for Environmental Sciences—Proceedings of the Sub-Session of Environmental Engineering Technology Innovation and Application (3). Tianjin, 2021: 789-797. | |
8 | TAHERI A, ZAHEDZADEH M, MASOUDI R, et al. Evaluation of reservoir performance under water injection considering the effect of inorganic scale deposition in an Iranian carbonate oil reservoir[C]// Scheveningen, The Netherlands: 8th European Formation Damage Conference, 2009. |
9 | 沈健, 王连成, 赵艳婷. 天津市中心城区老旧地热回灌系统技术改造方法探析[J]. 地质调查与研究, 2016, 39(2): 153-156. |
SHEN Jian, WANG Liancheng, ZHAO Yanting. Exploration and analysis of technical transformation on the old geothermal reinjection systems in the central city of Tianjin[J]. Geological Survey and Research, 2016, 39(2): 153-156. | |
10 | 戴群, 王聪, 罗杨, 等. 砂岩地热储层回灌堵塞机理研究及治理对策[J]. 精细石油化工进展, 2017, 18(6): 10-13. |
DAI Qun, WANG Cong, LUO Yang, et al. Research on sandstone geothermal reservoir reinjection plugging mechanism and measures against it[J]. Advances in Fine Petrochemicals, 2017, 18(6): 10-13. | |
11 | 吕灿. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 城市建设理论研究(电子版), 2017(26): 180. |
Can LYU. Clogging mechanism of tailwater recharge in ultra-deep porous geothermal thermal storage[J]. Theoretical Research in Urban Construction, 2017(26): 180. | |
12 | ZHANG Liang, GENG Songhe, YANG Linchao, et al. Formation blockage risk analysis of geothermal water reinjection: Rock property analysis, pumping and reinjection tests, and long-term reinjection prediction[J]. Geoscience Frontiers, 2022, 13(1): 101299. |
13 | 赵鹏飞. 基于Origin的渗透系数衰减方程在地热水回灌中的应用[J]. 地质与资源, 2021, 30(1): 71-74. |
ZHAO Pengfei. Application of origin-based permeability coefficient attenuation equation in geothermal water recharge[J]. Geology and Resources, 2021, 30(1): 71-74. | |
14 | ZHAO Zhen, QIN Guangxiong, LUO Yinfei, et al. Experimental study on reservoir physical properties and formation blockage risk in geothermal water reinjection in Xining Basin: Taking well DR2018 as an example[J]. Energies, 2021, 14(9): 2671. |
15 | 高宗军, 夏璐, 何雪琴, 等. 砂岩热储地热尾水回灌悬浮物堵塞研究[J]. 地下水, 2021, 43(1): 1-3. |
GAO Zongjun, XIA Lu, HE Xueqin, et al. Study on suspended matter blockage in geothermal tail water recharge of sandstone thermal reservoir[J]. Ground Water, 2021, 43(1): 1-3. | |
16 | 王俞文, 牛海瑞, 王茜, 等. 中深层砂岩热储层高效回灌研究[J]. 石油石化绿色低碳, 2022, 7(1): 65-71. |
WANG Yuwen, NIU Hairui, WANG Xi, et al. Study on efficient recharge of middle and deep sandstone geothermal reservoir[J]. Green Petroleum & Petrochemicals, 2022, 7(1): 65-71. | |
17 | SONG Wei, LIU Xiaoxiu, ZHENG Tuanfeng, et al. A review of recharge and clogging in sandstone aquifer[J]. Geothermics, 2020, 87: 101857. |
18 | KOHFAHL Claus, MASSMANN Gudrun, PEKDEGER Asaf. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany[J]. Hydrogeology Journal, 2009, 17(3): 571-578. |
19 | HOLOCHER J, PEETERS F, AESCHBACH-HERTIG W, et al. Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition[J]. Environmental Science & Technology, 2003, 37(7): 1337-1343. |
20 | XIAN Yang, JIN Menggui, ZHAN Hongbin, et al. Reactive transport of nutrients and bioclogging during dynamic disconnection process of stream and groundwater[J]. Water Resources Research, 2019, 55(5): 3882-3903. |
21 | KANMANI Subramaniam, GANDHIMATHI Rajan, MUTHUKKUMARAN Kasinathan. Bioclogging in porous media: Influence in reduction of hydraulic conductivity and organic contaminants during synthetic leachate permeation[J]. Journal of Environmental Health Science and Engineering, 2014, 12(1): 1-11. |
22 | 常明. 地热回灌井回灌效果降低原因分析及解决办法[J]. 石化技术, 2016, 23(9): 263. |
CHANG Ming. Reason analysis and solution for the reduction of recharge effect of geothermal recharge well[J]. Petrochemical Industry Technology, 2016, 23(9): 263. | |
23 | ZHANG Liang, GENG Songhe, CHAO Jiahao, et al. Scaling and blockage risk in geothermal reinjection wellbore: Experiment assessment and model prediction based on scaling deposition kinetics[J]. Journal of Petroleum Science and Engineering, 2022, 209: 109867. |
24 | JING Guolin, TANG Shan, LI Xiaoxiao, et al. The analysis of scaling mechanism for water-injection pipe columns in the Daqing Oilfield[J]. Arabian Journal of Chemistry, 2017, 10: S1235-S1239. |
25 | 刘雪玲, 朱家玲. 新近系砂岩地热回灌堵塞问题的探讨[J]. 水文地质工程地质, 2009, 36(5): 138-141. |
LIU Xueling, ZHU Jialing. A study of clogging in geothermal reinjection wells in the Neogene sandstone aquifer[J]. Hydrogeology & Engineering Geology, 2009, 36(5): 138-141. | |
26 | 阮传侠, 冯树友, 沈健, 等. 天津滨海新区地热资源循环利用研究——馆陶组热储回灌技术研究与示范[J]. 地质力学学报, 2017, 23(3): 498-506. |
RUAN Chuanxia, FENG Shuyou, SHEN Jian, et al. A study on the recycling utilization of geothermal resources in Binhai new area, Tianjin—Study and demonstration of thermal storage and reinjection technology of Guantao Reservoir[J]. Journal of Geomechanics, 2017, 23(3): 498-506. | |
27 | ESKIN G I. Cavitation mechanism of ultrasonic melt degassing[J]. Ultrasonics Sonochemistry, 1995, 2(2): S137-S141. |
28 | LI Junwen, MOMONO Tadashi, TAYU Yoshinori, et al. Application of ultrasonic treating to degassing of metal ingots[J]. Materials Letters, 2008, 62(25): 4152-4154. |
29 | XU Hanbing, HAN Qingyou, MEEK Thomas T. Effects of ultrasonic vibration on degassing of aluminum alloys[J]. Materials Science and Engineering: A, 2008, 473(1/2): 96-104. |
30 | PUGA H, BARBOSA J, SEABRA E, et al. New trends in aluminium degassing A comparative study[C]//Fourth International Conference on Advances and Trends in Engineering Materials and their Applications. 2009. |
31 | WANG J, YANG F, YUAN X, et al. Successfully sterilizing the sulfate bacteria with ultraviolet radiation in produced-water treatment in Daqing oilfield[C]// Jakarta, Indonesia: SPE Asia Pacific Oil and Gas. Conference and Exhibition, 2005. |
32 | 罗立新, 宋成举, 王琳. 紫外线杀菌技术在油田注水处理中的应用研究[J]. 给水排水, 1999, 25(8): 41-44. |
LUO Lixin, SONG Chengju, WANG Lin. On application of ultra violet disinfection for oil field refilling[J]. Water & Wastewater Engineering, 1999, 25(8): 41-44. | |
33 | QIAO Yang, CHEN Daoyi, WEN Diya. Use of coupled wavelength ultraviolet light-emitting diodes for inactivation of bacteria in subsea oil-field injection water[J]. Science of the Total Environment, 2018, 640/641: 757-763. |
34 | 朱家玲, 刘雪玲, 王坤, 等. 地热能开发与应用技术[M]. 北京: 化学工业出版社, 2006. |
ZHU Jialing, LIU Xueling, WANG Kun, et al. Geothermal energy development and application technology[M]. Beijing: Chemical Industry Press, 2006. | |
35 | 丁有生. 紫外杀菌灯技术与应用的发展[J]. 灯与照明, 2015, 39(2): 1-4. |
DING Yousheng. The development of ultraviolet germicidal lamptechnology and application[J]. Light & Lighting, 2015, 39(2): 1-4. | |
36 | ROZENBERG L D. Physical principles of ultrasonic technology[M]. New York: Plenum Press, 1973: 253–336. |
37 | 国家能源局. 油田注入水细菌分析方法 绝迹稀释法: [S]. 北京: 石油工业出版社, 2012. |
National Energy Bureau of the People’s Republic of China. Analysis method of the bacteria for oilfield injecting water. Disappearing dilution method: [S]. Beijing: Petroleum Industry Press, 2012. | |
38 | COLT John. Dissolved gas concentration in water: computation as functions of temperature, salinity and pressure[M]. Elsevier, 2012. |
39 | 吴木生, 李爱梅, 姜新慧, 等. 超声波紫外线协同杀菌技术在饮用天然水除菌中的应用研究[J]. 食品工业科技, 2015, 36(15): 126-129. |
WU Musheng, LI Aimei, JIANG Xinhui, et al. Research of the application of synergistic ultrasonic- ultraviolet sterilization technology on drinkable natural water[J]. Science and Technology of Food Industry, 2015, 36(15): 126-129. | |
40 | 郑永哲, 王江, 于学良, 等. 超声波协同紫外线提高污水处理杀菌效果[J]. 石油仪器, 2008(5): 59-61. |
ZHENG Yongzhe, WANG Jiang, YU Xueliang, et al. Using ultrasonic wave combined with ultraviolet ray to improve bactericidal effection in sewage treatment[J]. Petroleum Instruments, 2008(5): 59-61. | |
41 | MONNIER H, WILHELM A M, DELMAS H. Effects of ultrasound on micromixing in flow cell[J]. Chemical Engineering Science, 2000, 55(19): 4009-4020. |
42 | XIN Qing, ZHANG Xingwang, LI Zhongjian, et al. Sterilization of oil-field re-injection water using combination treatment of pulsed electric field and ultrasound[J]. Ultrasonics Sonochemistry, 2009, 16(1): 1-3. |
43 | LIU Bin, WANG Dongjing, LIU Bingmi, et al. The influence of ultrasound on the fluoroquinolones antibacterial activity[J]. Ultrasonics Sonochemistry, 2011, 18(5): 1052-1056. |
44 | KODA Shinobu, MIYAMOTO Masaki, TOMA Maricela, et al. Inactivation of escherichia coli and streptococcus mutans by ultrasound at 500 kHz[J]. Ultrasonics Sonochemistry, 2009, 16(5): 655-659. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[3] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[4] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[5] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[6] | 王文昊, 何立东, 王学志, 闫泽, 贾兴运, 刘春瑞. 偏心工况下梳齿、蜂窝与蜂窝-梳齿密封的泄漏特性[J]. 化工进展, 2023, 42(4): 1698-1707. |
[7] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[8] | 罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239. |
[9] | 王唯, 张东旭, 李遵照, 王晓霖, 黄启玉. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
[10] | 侯婉, 陈汇龙, 程谦, 陈英健, 卫泽鹏, 赵斌娟. 高温密封润滑膜汽液固流动特性数值计算分析[J]. 化工进展, 2023, 42(2): 699-710. |
[11] | 刘君康, 王宏超, 熊通, 晏刚, 郭宁, 刘睿. 热泵空调翅片管换热器流路优化研究进展[J]. 化工进展, 2023, 42(1): 107-117. |
[12] | 李栋先, 王佳, 蒋剑春. 超声辅助下皂脚加压水解制备脂肪酸[J]. 化工进展, 2023, 42(1): 409-416. |
[13] | 李雅侠, 韩泽民, 王凯, 张平, 张丽, 张静. 不同位置射流强化螺旋通道传热性能分析[J]. 化工进展, 2023, 42(1): 128-137. |
[14] | 张晓啸, 尚振华, 张向京. 微管反应器中硝基氯苯的连续合成[J]. 化工进展, 2022, 41(9): 5022-5028. |
[15] | 毛纪金, 张东辉, 孙利利, 雷钦晖, 屈健. 两种烧结通道的沸腾传热和阻力特性对比[J]. 化工进展, 2022, 41(7): 3483-3492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |