化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1397-1410.DOI: 10.16085/j.issn.1000-6613.2022-0800
张艺璇(), 胡伟, 刘梦瑶, 鞠敬鸽(), 赵义侠(), 康卫民()
收稿日期:
2022-05-05
修回日期:
2022-06-23
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
鞠敬鸽,赵义侠,康卫民
作者简介:
张艺璇(1998—),女,硕士研究生,研究方向为锌离子电池。E-mail:zhangyx187@126.com。
基金资助:
ZHANG Yixuan(), HU Wei, LIU Mengyao, JU Jingge(), ZHAO Yixia(), KANG Weimin()
Received:
2022-05-05
Revised:
2022-06-23
Online:
2023-03-15
Published:
2023-04-10
Contact:
JU Jingge, ZHAO Yixia, KANG Weimin
摘要:
锌离子电池(ZIBs)具有环境友好、高安全性和低成本等优势,然而,锌负极的枝晶生长和水系电解质的固有挑战(如水分解反应、水蒸发和电解质泄漏)使其在实际使用中循环稳定性较差。聚合物电解质拥有较低的水含量和较高的弹性模量,能够有效克服上述挑战。本文基于聚合物电解质的基本原理,综述了聚合物电解质在ZIBs中的研究进展,介绍了近年来用于改善固态聚合物电解质电化学性能及力学性能的各种策略,分析对比了不同策略的作用机理及应用进展。阐述了凝胶态聚合物电解质在ZIBs的应用及功能性凝胶电解质的研究现状,展示了其在柔性智能电子设备的应用前景。最后,本文就开发基于聚合物电解质的高性能ZIBs提出挑战,如离子导电性与机械强度不足、界面问题及功能单一等,并提出了克服这些挑战的展望,以期为ZIBs中聚合物电解质的研究提供参考和借鉴。
中图分类号:
张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410.
ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410.
1 | THOMAS J M, EDWARDS P P, DOBSON P J, et al. Decarbonising energy: the developing international activity in hydrogen technologies and fuel cells[J]. Journal of Energy Chemistry, 2020, 51: 405-415. |
2 | QIN Yudi, DU Jiuyu, LU Languang, et al. A rapid lithium-ion battery heating method based on bidirectional pulsed current: heating effect and impact on battery life[J]. Applied Energy, 2020, 280: 115957. |
3 | LIANG Yeru, ZHAO Chenzi, YUAN Hong, et al. A review of rechargeable batteries for portable electronic devices[J]. InfoMat, 2019, 1(1): 6-32. |
4 | LI Matthew, LU Jun, CHEN Zhongwei, et al. 30 Years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): e1800561. |
5 | WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443. |
6 | TANG Boya, SHAN Lutong, LIANG Shuquan, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304. |
7 | XING Zhenyu, WANG Shun, YU Aiping, et al. Aqueous intercalation-type electrode materials for grid-level energy storage: beyond the limits of lithium and sodium[J]. Nano Energy, 2018, 50: 229-244. |
8 | HUANG Jianhang, GUO Zhaowei, MA Yuanyuan, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): 1800272. |
9 | LIU Zhuoxin, HUANG Yan, HUANG Yang, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1): 180-232. |
10 | VERMA V, KUMAR S, MANALASTAS W JR, et al. Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: challenges and outlook[J]. Advanced Sustainable Systems, 2019, 3(1): 1800111. |
11 | Duan BIN, WEN Yunping, WANG Yonggang, et al. The development in aqueous lithium-ion batteries[J]. Journal of Energy Chemistry, 2018, 27(6): 1521-1535. |
12 | HERTZBERG B J, HUANG An, HSIEH A, et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn-MnO2 alkaline battery[J]. Chemistry of Materials, 2016, 28(13): 4536-4545. |
13 | WANG Fei, FAN Xiulin, GAO Tao, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science, 2017, 3(10): 1121-1128. |
14 | FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29(7): 1604685. |
15 | MAINAR A R, COLMENARES L C, BLÁZQUEZ J A, et al. A brief overview of secondary zinc anode development: the key of improving zinc-based energy storage systems[J]. International Journal of Energy Research, 2018, 42(3): 903-918. |
16 | FANG Guozhao, ZHOU Jiang, PAN Anqiang, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501. |
17 | GENG M, NORTHWOOD D O. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. International Journal of Hydrogen Energy, 2003, 28(6): 633-636. |
18 | MCLARNON F R, CAIRNS E J. The secondary alkaline zinc electrode[J]. Journal of the Electrochemical Society, 1991, 138(2): 645-656. |
19 | ZENG Xiaohui, HAO Junnan, WANG Zhijie, et al. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes[J]. Energy Storage Materials, 2019, 20: 410-437. |
20 | TSAI W L, HSU P C, HWU Y, et al. Building on bubbles in metal electrodeposition[J]. Nature, 2002, 417(6885): 139. |
21 | CAI Zhao, Yangtao OU, WANG Jindi, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J]. Energy Storage Materials, 2020, 27: 205-211. |
22 | ZHANG Leyuan, CHEN Liang, ZHOU Xufeng, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5V: the zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): 1400930. |
23 | XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935. |
24 | SONG Ming, TAN Hua, CHAO Dongliang, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564. |
25 | CAI Yangsheng, LIU Fei, LUO Zhigao, et al. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode[J]. Energy Storage Materials, 2018, 13: 168-174. |
26 | DING Junwei, DU Zhiguo, GU Linqing, et al. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide[J]. Advanced Materials, 2018, 30(26): 1800762. |
27 | KUNDU D P, HOSSEINI VAJARGAH S, WAN Liwen, et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface[J]. Energy & Environmental Science, 2018, 11(4): 881-892. |
28 | HEREMANS P, TRIPATHI A K, DE JAMBLINNE DE MEUX A, et al. Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications[J]. Advanced Materials, 2016, 28(22): 4266-4282. |
29 | SHI Bojing, LI Zhou, FAN Yubo. Implantable energy-harvesting devices[J]. Advanced Materials, 2018, 30(44): e1801511. |
30 | FENTON D E, PARKER J M, WRIGHT P V. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14(11): 589. |
31 | XUE Zhigang, HE Dan, XIE Xiaolin. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. |
32 | CHEN Renjie, QU Wenjie, GUO Xing, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons[J]. Materials Horizons, 2016, 3(6): 487-516. |
33 | LONG Lizhen, WANG Shuanjin, XIAO Min, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
34 | WANG Zifeng, RUAN Zhaoheng, LIU Zhuoxin, et al. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function[J]. Journal of Materials Chemistry A, 2018, 6(18): 8549-8557. |
35 | WANG Zifeng, RUAN Zhaoheng, Wing Sum NG, et al. Integrating a triboelectric nanogenerator and a zinc-ion battery on a designed flexible 3D spacer fabric[J]. Small Methods, 2018, 2(10): 1800150. |
36 | BASKORO Febri, WONG Huiqi, YEN Hungju. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery[J]. ACS Applied Energy Materials, 2019, 2(6): 3937-3971. |
37 | KOTOBUKI M, SUZUKI Y, MUNAKATA H, et al. Electrochemical property of honeycomb type all-solid-state Li battery at high temperature[J]. Electrochemistry, 2011, 79(6): 464-466. |
38 | YI Jin, GUO Shaohua, HE Ping, et al. Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries[J]. Energy & Environmental Science, 2017, 10(4): 860-884. |
39 | YAN Huihui, ZHANG Xikun, YANG Zhengwei, et al. Insight into the electrolyte strategies for aqueous zinc ion batteries[J]. Coordination Chemistry Reviews, 2022, 452: 214297. |
40 | YANG M X, DRISCOLL D M, BALASUBRAMANIAN M, et al. Solvation structure and electrochemical properties of a new weakly coordinating aluminate salt as a nonaqueous electrolyte for zinc batteries[J]. Journal of the Electrochemical Society, 2020, 167(16): 160529. |
41 | YE H, XU J J. Zinc ion conducting polymer electrolytes based on oligomeric polyether/PVDF-HFP blends[J]. Journal of Power Sources, 2007, 165(2): 500-508. |
42 | KARAN S, SAHU T B, SAHU M J, et al. Investigations on ion transport behaviour in a non-lithium chemical based solid polymer electrolyte (SPE): [PEO: ZnA][J]. Materials Today: Proceedings, 2016, 3(2): 109-114. |
43 | KARAN S, SAHU T B, SAHU M J, et al. Characterization of ion transport property in hot-press cast solid polymer electrolyte (SPE) films: [PEO: Zn(CF3SO3)2][J]. Ionics, 2017, 23(10): 2721-2726. |
44 | CHEN Long, LI Yutao, LI Shuaipeng, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176-184. |
45 | JOHNSI M, AUSTIN SUTHANTHIRARAJ S. Preparation, zinc ion transport properties, and battery application based on poly(vinilydene fluoride-co-hexa fluoro propylene) polymer electrolyte system containing titanium dioxide nanofiller[J]. High Performance Polymers, 2015, 27(7): 877-885. |
46 | LIU Wei, LIU Nian, SUN Jie, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
47 | CHEN Ze, LI Xinliang, WANG Donghong, et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures[J]. Energy & Environmental Science, 2021, 14(6): 3492-3501. |
48 | HUANG Jiaqi, CHI Xiaowei, YANG Jianhua, et al. An ultrastable Na-Zn solid-state hybrid battery enabled by a robust dual-cross-linked polymer electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17583-17591. |
49 | LIU Dong, TANG Zhehao, LUO Longfei, et al. Self-healing solid polymer electrolyte with high ion conductivity and super stretchability for all-solid zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 36320-36329. |
50 | GAO Lu, LI Jianxin, JU Jingge, et al. High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery[J]. Journal of Energy Chemistry, 2021, 54: 644-654. |
51 | LI Dan, CHEN Long, WANG Tianshi, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
52 | CHEN Long, FAN Lizhen. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15: 37-45. |
53 | GALIŃSKI M, LEWANDOWSKI A, STĘPNIAK I. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006, 51(26): 5567-5580. |
54 | JANKOWSKI P, WIECZOREK W, JOHANSSON P. Functional ionic liquids: cationic SEI-formers for lithium batteries[J]. Energy Storage Materials, 2019, 20: 108-117. |
55 | Yanqun LYU, XIAO Ying, MA Longtao, et al. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries[J]. Advanced Materials, 2022, 34(4): 2106409. |
56 | PRASANNA C M SAI, AUSTIN SUTHANTHIRARAJ S. PVC/PEMA-based blended nanocomposite gel polymer electrolytes plasticized with room temperature ionic liquid and dispersed with nano-ZrO2 for zinc ion batteries[J]. Polymer Composites, 2019, 40(9): 3402-3411. |
57 | MA Longtao, CHEN Shengmei, LI Na, et al. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries[J]. Advanced Materials, 2020, 32(14): e1908121. |
58 | POLU A R, RHEE H W. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7212-7219. |
59 | RATHIKA R, SUTHANTHIRARAJ S A. Influence of 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide plasticization on zinc-ion conducting PEO/PVDF blend gel polymer electrolyte[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(23): 19632-19643. |
60 | ZHOU Wenjun, ZHANG Meng, KONG Xiangyue, et al. Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries[J]. Advanced Science, 2021, 8(13): 2004490. |
61 | DUERAMAE I, OKHAWILAI M, KASEMSIRI P, et al. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery[J]. Scientific Reports, 2020, 10: 12587. |
62 | QIU Wenda, LI Yu, YOU Ao, et al. High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth[J]. Journal of Materials Chemistry A, 2017, 5(28): 14838-14846. |
63 | LI Hongfei, LIU Zhuoxin, LIANG Guojin, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148. |
64 | GAIKWAD A M, ZAMARAYEVA A M, ROUSSEAU J, et al. Highly stretchable alkaline batteries based on an embedded conductive fabric[J]. Advanced Materials, 2012, 24(37): 5071-5076. |
65 | TAFUR J P, ABAD J, ROMÁN E, et al. Charge storage mechanism of MnO2 cathodes in Zn/MnO2 batteries using ionic liquid-based gel polymer electrolytes[J]. Electrochemistry Communications, 2015, 60: 190-194. |
66 | HUANG Yan, LI Zhen, PEI Zengxia, et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte[J]. Advanced Energy Materials, 2018, 8(31): 1802288. |
67 | ZHANG Silan, YU Nengsheng, ZENG Sha, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(26): 12237-12243. |
68 | ZHU Minshen, WANG Zhenguang, LI Hongfei, et al. Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen[J]. Energy & Environmental Science, 2018, 11(9): 2414-2422. |
69 | ZHANG Qichong, LI Chaowei, LI Qiulong, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19(6): 4035-4042. |
70 | LI Hongfei, HAN Cuiping, HUANG Yan, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte[J]. Energy & Environmental Science, 2018, 11(4): 941-951. |
71 | CHAN Cheuk Ying, WANG Ziqi, LI Yangling, et al. Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30594-30602. |
72 | TAFUR J P, FERNÁNDEZ ROMERO A J. Electrical and spectroscopic characterization of PVdF-HFP and TFSI—Ionic liquids-based gel polymer electrolyte membranes. Influence of ZnTf2 salt[J]. Journal of Membrane Science, 2014, 469: 499-506. |
73 | ZHANG Guangzhao, YANG Yu, CHEN Yunhua, et al. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries[J]. Small, 2018, 14(29): e1801189. |
74 | YANG Yun, YU Dandan, WANG Hua, et al. Smart electrochemical energy storage devices with self-protection and self-adaptation abilities[J]. Advanced Materials, 2017, 29(45): 1703040. |
75 | CHOUDHURY N A, SAMPATH S, SHUKLA A K. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview[J]. Energy & Environmental Science, 2009, 2(1): 55-67. |
76 | HUANG Shuo, WAN Fang, BI Songshan, et al. A self-healing integrated all-in-one zinc-ion battery[J]. Angewandte Chemie International Edition, 2019, 58(13): 4313-4317. |
77 | LI Guo, ZHANG Hongji, FORTIN D, et al. Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities[J]. Langmuir, 2015, 31(42): 11709-11716. |
78 | WANG Na, ZHOU Rongkun, ZHENG Zilong, et al. Flexible solid-state Zn-polymer batteries with practical functions[J]. Chemical Engineering Journal, 2021, 425: 131454. |
79 | PEYGHAMBARZADEH S M, HASHEMABADI S H, HOSEINI S M, et al. Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators[J]. International Communications in Heat and Mass Transfer, 2011, 38(9): 1283-1290. |
80 | KUMAR R M, BASKAR P, BALAMURUGAN K, et al. On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration[J]. The Journal of Physical Chemistry A, 2012, 116(17): 4239-4247. |
81 | MO Funian, LIANG Guojin, MENG Qiangqiang, et al. A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20℃[J]. Energy & Environmental Science, 2019, 12(2): 706-715. |
82 | WANG Jiawei, HUANG Yuan, LIU Binbin, et al. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte[J]. Energy Storage Materials, 2021, 41: 599-605. |
83 | 王奔, 陈繁, Stephan HANDSCHUH-WANG, 等. 抗失水抗结冰水凝胶的研究进展[J]. 高分子学报, 2020, 51(9): 969-982. |
WANG Ben, CHEN Fan, Stephan HANDSCHUH-WANG, et al. Progresses in anti-dehydration and anti-freezing hydrogels[J]. Acta Polymerica Sinica, 2020, 51(9): 969-982. | |
84 | WIENER C G, TYAGI M, LIU Y, et al. Supramolecular hydrophobic aggregates in hydrogels partially inhibit ice formation[J]. The Journal of Physical Chemistry B, 2016, 120(24): 5543-5552. |
85 | ZHAO Yang, ZHANG Ye, SUN Hao, et al. A self-healing aqueous lithium-ion battery[J]. Angewandte Chemie International Edition, 2016, 55(46): 14384-14388. |
86 | ZHAO J W, SONIGARA K K, LI J J, et al. A smart flexible zinc battery with cooling recovery ability[J]. Angewandte Chemie International Edition, 2017, 56(27): 7871-7875. |
87 | SONI S S, FADADU K B, GIBAUD A. Ionic conductivity through thermoresponsive polymer gel: ordering matters[J]. Langmuir, 2012, 28(1): 751-756. |
88 | WU H, ZHUO D, KONG D S, et al. Improving battery safety by early detection of internal shorting with a bifunctional separator[J]. Nature Communications, 2014, 5: 5193. |
89 | MO Funian, LI Hongfei, PEI Zengxia, et al. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes[J]. Science Bulletin, 2018, 63(16): 1077-1086. |
90 | ZHANG Hao, XUE Pan, LIU Jialiang, et al. Thermal-switching and repeatable self-protective hydrogel polyelectrolytes for energy storage applications of flexible electronics[J]. ACS Applied Energy Materials, 2021, 4(6): 6116-6124. |
91 | SUN H Y, TAKEDA Y, IMANISHI N, et al. Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes[J]. Journal of the Electrochemical Society, 2000, 147(7): 2462-2467. |
92 | CHENG Xunliang, PAN Jian, ZHAO Yang, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(7): 1702184. |
93 | LIN Dingchang, LIU Yayuan, CUI Yi. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
94 | ZHAO Fei, SHI Ye, PAN Lijia, et al. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications[J]. Accounts of Chemical Research, 2017, 50(7): 1734-1743. |
95 | LIANG Jianneng, LUO Jing, SUN Qian, et al. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2019, 21: 308-334. |
96 | Hyungyeon CHA, KIM Junhyeok, LEE Yoonji, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small, 2018, 14(43): e1702989. |
97 | MA Longtao, CHEN Shengmei, LI Xinliang, et al. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(52): 23836-23844. |
[1] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[2] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[3] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[4] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[5] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[6] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[7] | 乔旭, 张竹修. 化工本征安全技术发展路径的思考与探索[J]. 化工进展, 2023, 42(7): 3319-3324. |
[8] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[9] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[10] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
[11] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[12] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[13] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[14] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[15] | 张志成, 韩大量, 樊丁辉, 陶莹, 翁哲, 杨全红. 本征安全水系锌离子电池的新进展: 锌负极晶面调控[J]. 化工进展, 2023, 42(5): 2504-2515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |