化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5786-5800.DOI: 10.16085/j.issn.1000-6613.2022-2355
• 材料科学与技术 • 上一篇
田晓录1(), 易义坤1, 海峰1, 吴振迪1, 郑申拓1, 郭靖宇1, 李明涛1,2()
收稿日期:
2022-12-26
修回日期:
2023-03-17
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
李明涛
作者简介:
田晓录(1993—),男,博士研究生,研究方向为锂离子电池电解质。E-mail:txl1993@stu.xjtu.edu.cn。
基金资助:
TIAN Xiaolu1(), YI Yikun1, HAI Feng1, WU Zhendi1, ZHENG Shentuo1, GUO Jingyu1, LI Mingtao1,2()
Received:
2022-12-26
Revised:
2023-03-17
Online:
2023-11-20
Published:
2023-12-15
Contact:
LI Mingtao
摘要:
近年来因撞击、穿刺等外力导致的安全事故已经成为目前限制锂离子电池发展的主要瓶颈。针对这一问题,可以向传统电解液中引入特定的纳米添加剂,赋予电解液剪切增稠的特性,从而提高电池的抗冲击能力。本文主要讨论了剪切增稠流体的定义、性质、原理和影响因素,并回顾了近年来剪切增稠流体应用在锂离子电池中的最新研究进展。旨在总结剪切增稠电解液的合成方法与其性能的相互关系,提出纳米颗粒填充物的表面修饰、更大的长宽比尺寸和适当的浓度提升有利于增强电解液的增稠性能。最后,提出寻找和设计新的功能型纳米填充颗粒,实现电解液增稠性能和电化学性能的共同提升,将是剪切增稠电解液未来的发展方向。
中图分类号:
田晓录, 易义坤, 海峰, 吴振迪, 郑申拓, 郭靖宇, 李明涛. 剪切增稠流体在锂离子电池电解质方面的研究进展[J]. 化工进展, 2023, 42(11): 5786-5800.
TIAN Xiaolu, YI Yikun, HAI Feng, WU Zhendi, ZHENG Shentuo, GUO Jingyu, LI Mingtao. Research progress in shear-thickening electrolytes for lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5786-5800.
纳米材料类型 | 剪切增稠电解液组成 | 临界剪切 速率 | 电池性能 (商用电解液性能) | 冲击测试方法与 结果 | 参考文献 |
---|---|---|---|---|---|
气相SiO2(14nm) | 6.3% SiO2+1mol/L LiPF6+EC/DMC | 3.6s-1 | LiFePO4/graphite 110mAh/g-5C (102mAh/g-5C) | 冲击仪撞击扣式电池,0.639J | [ |
Stöber(数十纳米) | 30% stöber+1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 130mAh/g-C/3 | 钢球撞击软包电池,5.65J | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2+ 1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 140 mAh/g-C/3 (141mAh/g-5C) | — | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2 +1.2mol/L LiPF6 + EC/DMC | — | 有限单元模型模拟 | — | [ |
AR5 SiO2纳米棒(1760nm) | 33% AR5 SiO2 + 1mol/L LiTFSI + EC/EMC | 102s-1 | LiNi1/3Mn1/3Co1/3O2/graphite 102mAh/g-C/10 | 弹道冲击测试,装甲板卸力37% | [ |
APTES修饰GF(3~10µm) | 37.5% mGFs + 1mol/L LiPF6 + EC/DMC | 25s-1 | LiFePO4/Li 100mAh/g-C/2 (120mAh/g-5C) | 钢球撞击软包电池,2.04J | [ |
表1 锂离子电池剪切增稠电解质概览
纳米材料类型 | 剪切增稠电解液组成 | 临界剪切 速率 | 电池性能 (商用电解液性能) | 冲击测试方法与 结果 | 参考文献 |
---|---|---|---|---|---|
气相SiO2(14nm) | 6.3% SiO2+1mol/L LiPF6+EC/DMC | 3.6s-1 | LiFePO4/graphite 110mAh/g-5C (102mAh/g-5C) | 冲击仪撞击扣式电池,0.639J | [ |
Stöber(数十纳米) | 30% stöber+1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 130mAh/g-C/3 | 钢球撞击软包电池,5.65J | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2+ 1.2mol/L LiPF6 + EC/DMC | — | LiNi1/3Mn1/3Co1/3O2/graphite 140 mAh/g-C/3 (141mAh/g-5C) | — | [ |
PMMA修饰SiO2(79nm) | 30% PMMA-SiO2 +1.2mol/L LiPF6 + EC/DMC | — | 有限单元模型模拟 | — | [ |
AR5 SiO2纳米棒(1760nm) | 33% AR5 SiO2 + 1mol/L LiTFSI + EC/EMC | 102s-1 | LiNi1/3Mn1/3Co1/3O2/graphite 102mAh/g-C/10 | 弹道冲击测试,装甲板卸力37% | [ |
APTES修饰GF(3~10µm) | 37.5% mGFs + 1mol/L LiPF6 + EC/DMC | 25s-1 | LiFePO4/Li 100mAh/g-C/2 (120mAh/g-5C) | 钢球撞击软包电池,2.04J | [ |
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
2 | SHU Kewei, WANG Caiyun, LI Weihua, et al. Electrolytes with reversible switch between liquid and solid phases[J]. Current Opinion in Electrochemistry, 2020, 21: 297-302. |
3 | THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863. |
4 | NZEREOGU P U, OMAH A D, EZEMA F I, et al. Anode materials for lithium-ion batteries: A review[J]. Applied Surface Science Advances, 2022, 9: 100233. |
5 | YANG Xiaofei, ADAIR Keegan R, GAO Xuejie, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries[J]. Energy & Environmental Science, 2021, 14(2): 643-671. |
6 | KALHOFF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. ChemSusChem, 2015, 8(13): 2154-2175. |
7 | ARORA S, SHEN Weixiang, KAPOOR Ajay. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1319-1331. |
8 | CHEN Yuqing, KANG Yuqiong, ZHAO Yun, et al. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. |
9 | FAN Lizhen, HE Hongcai, Cewen NAN. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019. |
10 | ZHU Jiadeng, ZHANG Zhen, ZHAO Sheng, et al. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: Design, performance, and challenges[J]. Advanced Energy Materials, 2021, 11(14): 2003836. |
11 | HU Enyuan, Seong-Min BAK, LIU Jue, et al. Oxygen-release-related thermal stability and decomposition pathways of Li x Ni0.5Mn1.5O4 cathode materials[J]. Chemistry of Materials, 2014, 26(2): 1108-1118. |
12 | FAN Xiulin, WANG Chunsheng. High-voltage liquid electrolytes for Li batteries: Progress and perspectives[J]. Chemical Society Reviews, 2021, 50(18): 10486-10566. |
13 | REN Dongsheng, FENG Xuning, LIU Lishuo, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
14 | BALAKRISHNAN P G, RAMESH R, PREM KUMAR T. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2006, 155(2): 401-414. |
15 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
16 | LONG Lizhen, WANG Shuanjin, XIAO Min, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10038-10069. |
17 | MACFARLANE D R, FORSYTH M, HOWLETT P C, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage[J]. Nature Reviews Materials, 2016, 1: 15005. |
18 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: 16141. |
19 | GAUTHIER M, CARNEY T J, ALEXIS G, et al. Electrode-electrolyte interface in Li-ion batteries: Current understanding and new insights[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4653-4672. |
20 | TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Materialia, 2013, 61(3): 759-770. |
21 | LEE Y S, WAGNER N J. Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear rates[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7015-7024. |
22 | WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32. |
23 | BROWN E, JAEGER H M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming[J]. Reports on Progress in Physics Physical Society, 2014, 77(4): 046602. |
24 | BARNES H A. Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 1989, 33(2): 329-366. |
25 | LEE Y S, WAGNER N J. Dynamic properties of shear thickening colloidal suspensions[J]. Rheologica Acta, 2003, 42(3): 199-208. |
26 | HOFFMAN R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions[J]. Journal of Rheology, 1998, 42(1): 111-123. |
27 | BENDER J, WAGNER N J. Reversible shear thickening in monodisperse and bidisperse colloidal dispersions[J]. Journal of Rheology, 1996, 40(5): 899-916. |
28 | WEI Minghai, SUN Li, ZHANG Chunwei, et al. Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles[J]. Journal of Materials Science, 2019, 54(1): 346-355. |
29 | LIN N Y C, GUY B M, HERMES M, et al. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions[J]. Physical Review Letters, 2015, 115(22): 228304. |
30 | FISCHER C, BRAUN S A, P-E BOURBAN, et al. Dynamic properties of sandwich structures with integrated shear-thickening fluids[J]. Smart Materials and Structures, 2006, 15(5): 1467-1475. |
31 | ZHANG X Z, LI W H, GONG X L. The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper[J]. Smart Materials and Structures, 2008, 17(3): 035027. |
32 | PINTO F, MEO M. Design and manufacturing of a novel shear thickening fluid composite (STFC) with enhanced out-of-plane properties and damage suppression[J]. Applied Composite Materials, 2017, 24(3): 643-660. |
33 | GALINDO-ROSALES F J, MARTÍNEZ-ARANDA S, CAMPO-DEAÑO L. CorkSTFμfluidics—A novel concept for the development of eco-friendly light-weight energy absorbing composites[J]. Materials & Design, 2015, 82: 326-334. |
34 | KANG Tae Jin, KIM Chang Youn, HONG Kyung Hwa. Rheological behavior of concentrated silica suspension and its application to soft armor[J]. Journal of Applied Polymer Science, 2012, 124(2): 1534-1541. |
35 | MAJUMDAR A, BUTOLA B S, SRIVASTAVA Ankita. An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials[J]. Materials & Design, 2013, 51: 148-153. |
36 | KATIYAR A, NANDI T, PRASAD N E. Impact behavior of aminosilane functionalized nanosilica based shear thickening fluid impregnated Kevlar fabrics[J]. Journal of Applied Polymer Science, 2021, 138(34): 50862. |
37 | LI X, CAO H L, GAO S, et al. Preparation of body armour material of Kevlar fabric treated with colloidal silica nanocomposite[J]. Plastics, Rubber and Composites, 2008, 37(5/6): 223-226. |
38 | QIN Jianbin, GUO Borui, ZHANG Le, et al. Soft armor materials constructed with Kevlar fabric and a novel shear thickening fluid[J]. Composites B: Engineering, 2020, 183: 107686. |
39 | LAUN H M, BUNG R, HESS S, et al. Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow[J]. Journal of Rheology, 1992, 36(4): 743-787. |
40 | FARR R S, MELROSE J R, BALL R C. Kinetic theory of jamming in hard-sphere startup flows[J]. Physical Review E, 1997, 55(6): 7203-7211. |
41 | PHUNG T N, BRADY J F, BOSSIS G. Stokesian dynamics simulation of Brownian suspensions[J]. Journal of Fluid Mechanics, 1996, 313: 181-207. |
42 | MARI R, SETO R, MORRIS J F, et al. Shear thickening, frictionless and frictional rheologies in non-brownian suspensions[J]. Journal of Rheology, 2014, 58(6): 1693-1724. |
43 | WYART M, CATES M E. Discontinuous shear thickening without inertia in dense non-brownian suspensions[J]. Physical Review Letters, 2014, 112(9): 098302. |
44 | JIANG Weifeng, XUAN Shouhu, GONG Xinglong. The role of shear in the transition from continuous shear thickening to discontinuous shear thickening[J]. Applied Physics Letters, 2015, 106(15): 151902. |
45 | BOSSIS G, GRASSELLI Y, MEUNIER A, et al. Tunable discontinuous shear thickening with magnetorheological suspensions[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(1): 5-11. |
46 | HE Qianyun, GONG Xinglong, XUAN Shouhu, et al. Shear thickening of suspensions of porous silica nanoparticles[J]. Journal of Materials Science, 2015, 50(18): 6041-6049. |
47 | NAKAMURA Hiroshi, MAKINO Soichiro, ISHII Masahiko. Continuous shear thickening and discontinuous shear thickening of concentrated monodispersed silica slurry[J]. Advanced Powder Technology, 2020, 31(4): 1659-1664. |
48 | GÜRGEN S, KUŞHAN M C, LI W. The effect of carbide particle additives on rheology of shear thickening fluids[J]. Korea-Australia Rheology Journal, 2016, 28(2): 121-128. |
49 | HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites A: Applied Science and Manufacturing, 2016, 88: 263-271. |
50 | PETEL O E, OUELLET S, LOISEAU J, et al. A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction[J]. International Journal of Impact Engineering, 2015, 85: 83-96. |
51 | WETZEL E D, LEE Y S, EGRES R G, et al. The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-kevlar composites[J]. AIP Conference Proceedings, 2004, 712(1): 288-293. |
52 | BOSSIS G, BRADY J F. The rheology of Brownian suspensions[J]. The Journal of Chemical Physics, 1989, 91(3): 1866-1874. |
53 | WU Yuxuan, CAO Saisai, XUAN Shouhu, et al. High performance zeolitic imidazolate framework-8 (ZIF-8) based suspension: Improving the shear thickening effect by controlling the morphological particle-particle interaction[J]. Advanced Powder Technology, 2020, 31(1): 70-77. |
54 | WAGNER F T, LAKSHMANAN B, MATHIAS M F. Electrochemistry and the future of the automobile[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2204-2219. |
55 | ZAREI M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications[J]. TrAC Trends in Analytical Chemistry, 2017, 91: 26-41. |
56 | Mohammad Z, Jamal A. Profiling of nanoparticle-protein interactions by electrophoresis techniques[J]. Analytical and Bioanalytical Chemistry, 2019, 411(1): 79-96. |
57 | BENAJES J, GARCÍA A, Javier MONSALVE-SERRANO, et al. Emissions reduction from passenger cars with RCCI plug-in hybrid electric vehicle technology[J]. Applied Thermal Engineering, 2020, 164: 114430. |
58 | MASIAS A, MARCICKI J, PAXTON W A. Opportunities and challenges of lithium ion batteries in automotive applications[J]. ACS Energy Letters, 2021, 6(2): 621-630. |
59 | MADANI S S, SCHALTZ E, KÆR S K. Characterization of the compressive load on a lithium-ion battery for electric vehicle application[J]. Machines, 2021, 9(4): 71. |
60 | DUAN X, NATERER G F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5176-5182. |
61 | KIZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1): 370-375. |
62 | KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112. |
63 | DING Jie, TIAN Tongfei, MENG Qing, et al. Smart multifunctional fluids for lithium ion batteries: Enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3(1): 1-7. |
64 | BERGSTRÖM L. Shear thinning and shear thickening of concentrated ceramic suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 133(1/2): 151-155. |
65 | PETEL O E, OUELLET S, LOISEAU J, et al. The effect of particle strength on the ballistic resistance of shear thickening fluids[J]. Applied Physics Letters, 2013, 102(6): 064103. |
66 | VEITH G M, ARMSTRONG B L, WANG H, et al. Shear thickening electrolytes for high impact resistant batteries[J]. ACS Energy Letters, 2017, 2(9): 2084-2088. |
67 | MARANZANO B J, WAGNER N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions[J]. The Journal of Chemical Physics, 2001, 114(23): 10514-10527. |
68 | SHEN B H, ARMSTRONG B L, DOUCET M, et al. Shear thickening electrolyte built from sterically stabilized colloidal particles[J]. ACS Applied Materials & Interfaces, 2018, 10(11): 9424-9434. |
69 | SHEN B H, VEITH G M, ARMSTRONG B L, et al. Predictive design of shear-thickening electrolytes for safety considerations[J]. Journal of the Electrochemical Society, 2017, 164(12): A2547-A2551. |
70 | YE Yilan, XIAO Han, REAVES Kelley, et al. Effect of nanorod aspect ratio on shear thickening electrolytes for safety-enhanced batteries[J]. ACS Applied Nano Materials, 2018, 1(6): 2774-2784. |
71 | LIU Kewei, CHENG Chung-Fu, ZHOU Leyao, et al. A shear thickening fluid based impact resistant electrolyte for safe Li-ion batteries[J]. Journal of Power Sources, 2019, 423: 297-304. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[3] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[4] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[5] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[6] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[8] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[9] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[10] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[11] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[12] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[13] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[14] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[15] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |