1 |
张延, 严晓菊, 孙越, 等. 中国抗生素滥用现状及其在环境中的分布情况[J]. 当代化工, 2019, 48(11): 2660-2662.
|
|
ZHANG Yan, YAN Xiaoju, SUN Yue, et al. Current situation of antibiotic abuse in China and its residues distribution in the environment[J]. Contemporary Chemical Industry, 2019, 48(11): 2660-2662.
|
2 |
Hyejun JO, RAZA Shahbaz, FAROOQ Adeel, et al. Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea[J]. Environmental Pollution, 2021, 276: 116764.
|
3 |
PAULUS Gabriela K, HORNSTRA Luc M, ALYGIZAKIS Nikiforos, et al. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes[J]. International Journal of Hygiene and Environmental Health, 2019, 222(4): 635-644.
|
4 |
李士俊, 谢文明. 污水处理厂中抗生素去除规律研究进展[J]. 环境科学与技术, 2019, 42(3): 17-29.
|
|
LI Shijun, XIE Wenming. Research advances in antibiotics removal in wastewater treatment plants: A review[J]. Environmental Science & Technology, 2019, 42(3): 17-29.
|
5 |
邵一如, 席北斗, 曹金玲, 等. 抗生素在城市污水处理系统中的分布及去除[J]. 环境科学与技术, 2013, 36(7): 85-92, 182.
|
|
SHAO Yiru, XI Beidou, CAO Jinling, et al. Occurrence of antibiotics and their removal mechanism in municipal sewage treatment plants[J]. Environmental Science & Technology, 2013, 36(7): 85-92, 182.
|
6 |
尹福斌, 詹源航, 岳彩德, 等. 膜分离技术在大型养殖场沼液处理中的应用与展望[J]. 农业环境科学学报, 2021, 40(11): 2335-2341.
|
|
YIN Fubin, ZHAN Yuanhang, YUE Caide, et al. Research progress on membrane technology for treatment of husbandry biogas slurry and wastewater[J]. Journal of Agro-Environment Science, 2021, 40(11): 2335-2341.
|
7 |
ZHU Tingting, SU Zhongxian, LAI Wenxia, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776: 145906.
|
8 |
Sergi GARCIA-SEGURA, BRILLAS Enric. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35.
|
9 |
Renato MONTENEGRO-AYO, MORALES-GOMERO Juan Carlos, ALARCON Hugo, et al. Photoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO2 nanotube-coated disc flow reactor[J]. Chemosphere, 2021, 268: 129320.
|
10 |
DIVYAPRIYA G, SINGH Seema, MARTÍNEZ-HUITLE Carlos A, et al. Treatment of real wastewater by photoelectrochemical methods: An overview[J]. Chemosphere, 2021, 276: 130188.
|
11 |
LIU Dong, LI Huijun, GAO Ranpeng, et al. Enhanced visible light photoelectrocatalytic degradation of tetracycline hydrochloride by I and P co-doped TiO2 photoelectrode[J]. Journal of Hazardous Materials, 2021, 406: 124309.
|
12 |
LIANOS Panagiotis. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen[J]. Applied Catalysis B: Environmental, 2017, 210: 235-254.
|
13 |
LIU Yunni, LI Qian, LIAN Zichao, et al. Polarization field promoted photoelectrocatalysis for synergistic environmental remediation and H2 production[J]. Chemical Engineering Journal, 2022, 437: 135132.
|
14 |
SONG Rui, CHI Haibo, MA Qiuling, et al. Highly efficient degradation of persistent pollutants with 3D nanocone TiO2-based photoelectrocatalysis[J]. Journal of the American Chemical Society, 2021, 143(34): 13664-13674.
|
15 |
WEI Zhidong, LIU Junying, SHANGGUAN Wenfeng. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chinese Journal of Catalysis, 2020, 41(10): 1440-1450.
|
16 |
沈祥. 硫化铋纳米半导体材料的合成及其光电性质研究[D]. 长沙: 湖南大学, 2021.
|
|
SHEN Xiang. Synthesis and photoelectric properties of bismuth sulfide nano-semiconductor materials[D]. Changsha: Hunan University, 2021.
|
17 |
FENG Jun, JIANG Tao, HAN Yingchun, et al. Construction of dual Z-scheme Bi2S3/Bi2O3/WO3 ternary film with enhanced visible light photoelectrocatalytic performance[J]. Applied Surface Science, 2020, 505: 144632.
|
18 |
LIU Canjun, YANG Yahui, LI Wenzhang, et al. A novel Bi2S3 nanowire @ TiO2 nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation[J]. Chemical Engineering Journal, 2016, 302: 717-724.
|
19 |
LU Yan, RADIAN Popescu, DAGMAR Gerthsen, et al. Highly efficient recovery of H2 from industrial waste by sunlight-driven photoelectrocatalysis over a ZnS/Bi2S3/ZnO photoelectrode[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7756-7767.
|
20 |
AI Changzhi, XIE Pengcheng, ZHANG Xidong, et al. Explaining the enhanced photoelectrochemical behavior of highly ordered TiO2 nanotube arrays: Anatase/rutile phase junction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5274-5282.
|
21 |
MA Hao, YUAN Chenchen, WANG Xiaomin, et al. Deposition of CeO2 on TiO2 nanorods electrode by dielectric barrier discharge plasma to enhance the photoelectrochemical performance in high chloride salt system[J]. Separation and Purification Technology, 2021, 276: 119252.
|
22 |
REN Suocai, YANG Huimin, ZHANG Dingding, et al. Excellent performance of the photoelectrocatalytic CO2 reduction to formate by Bi2S3/ZIF-8 composite[J]. Applied Surface Science, 2022, 579: 152206.
|
23 |
JIA Meiying, LIU Qi, XIONG Weiping, et al. Ti3+ self-doped TiO2 nanotubes photoelectrode decorated with Ar-Fe2O3 derived from MIL-100(Fe): Enhanced photo-electrocatalytic performance for antibiotic degradation[J]. Applied Catalysis B: Environmental, 2022, 310: 121344.
|
24 |
FENG Chengyang, DENG Yaocheng, TANG Lin, et al. Core-shell Ag2CrO4/[email protected]3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities[J]. Applied Catalysis B: Environmental, 2018, 239: 525-536.
|
25 |
LI Xibao, KANG Bangbang, DONG Fan, et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies[J]. Nano Energy, 2021, 81: 105671.
|
26 |
LIU Yazi, ZHANG Huayang, KE Jun, et al. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 228: 64-74.
|
27 |
XIE Yibing, ZHOU Limin, HUANG Chuanjun, et al. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application[J]. Electrochimica Acta, 2008, 53(10): 3643-3649.
|
28 |
CAO Wen, YUAN Yuhang, YANG Cao, et al. In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen[J]. Chemical Engineering Journal, 2020, 391: 123608.
|
29 |
TANG Haifang, SHANG Qian, TANG Yanhong, et al. Static and continuous flow photoelectrocatalytic treatment of antibiotic wastewater over mesh of TiO2 nanotubes implanted with g-C3N4 nanosheets[J]. Journal of Hazardous Materials, 2020, 384: 121248.
|
30 |
张警方. CeZn/TiO2纳米管阵列光电催化降解苯并异噻唑啉酮[D]. 大连: 大连理工大学, 2020.
|
|
ZHANG Jingfang. Photocatalytic degradation of benzisothiazolinone by CeZn/TiO2 nanotube array[D]. Dalian: Dalian University of Technology, 2020.
|
31 |
LI Zhaojun, QI Weining, FENG Yao, et al. Degradation mechanisms of oxytetracycline in the environment[J]. Journal of Integrative Agriculture, 2019, 18(9): 1953-1960.
|
32 |
WANG Liming, LI Mengyao, PEI Liang, et al. Pt-N co-modified TiO2 nanotube electrode photoelectrocatalytic degradation of oxytetracycline in simulated wastewater[J]. Toxics, 2022, 10(11): 635.
|
33 |
CHENG Ling, TIAN Yulu, ZHANG Jingdong. Construction of p-n heterojunction film of Cu2O/α-Fe2O3 for efficiently photoelectrocatalytic degradation of oxytetracycline[J]. Journal of Colloid and Interface Science, 2018, 526: 470-479.
|
34 |
CHANGANAQUI Katherina, BRILLAS Enric, Hugo ALARCÓN, et al. ZnO/TiO2/Ag2Se nanostructures as photoelectrocatalysts for the degradation of oxytetracycline in water[J]. Electrochimica Acta, 2020, 331: 135194.
|
35 |
QIN Jin, YE Shangshi, YAN Kai, et al. Visible light-driven photoelectrocatalysis for simultaneous removal of oxytetracycline and Cu (Ⅱ) based on plasmonic Bi/Bi2O3/TiO2 nanotubes[J]. Journal of Colloid and Interface Science, 2022, 607: 1936-1943.
|
36 |
YU Chengze, HOU Jiaqi, ZHANG Bin, et al. In-situ electrodeposition synthesis of Z-scheme rGO/g-C3N4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system[J]. Journal of Environmental Management, 2022, 308: 114615.
|