化工进展 ›› 2023, Vol. 42 ›› Issue (1): 204-214.DOI: 10.16085/j.issn.1000-6613.2022-0501
收稿日期:
2022-03-28
修回日期:
2022-06-01
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
张大洲
作者简介:
张大洲(1987—),男,博士,高级工程师,研究方向为能源催化及工艺技术开发等。E-mail:zhangdazhou@cwcec.com。
ZHANG Dazhou(), LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei
Received:
2022-03-28
Revised:
2022-06-01
Online:
2023-01-25
Published:
2023-02-20
Contact:
ZHANG Dazhou
摘要:
乙醇酸甲酯(MG)官能团丰富,是一种重要的精细化工中间体,而且经过缩聚反应可制得新一代可生物降解材料聚乙醇酸。采用合成气经草酸二甲酯(DMO)加氢路线可实现MG的规模化制备,而该技术工业化的关键是高性能加氢催化剂的开发,当前DMO加氢制MG催化剂正处于工业化前期阶段。本文分析了DMO加氢反应网络及各特征反应的热力学特点,重点概述了DMO多相加氢制MG催化剂的研究进展,包括铜基催化剂、银基催化剂、非铜/银基催化剂等,基于网络特点分析了各催化剂的研究重点及存在的难题,并从反应工艺控制、催化剂载体设计、助剂及活性组分选择等角度提出了改善工业化催化剂开发及性能的思路,建议近期将改性复合载体负载的铜基催化剂,或以银、镍等为第二助剂的复合铜基催化剂作为重点攻关方向,远期将新型非贵金属体系作为储备方向,期望能为开发我国自主知识产权的工业化催化剂提供有益参考。
中图分类号:
张大洲, 卢文新, 商宽祥, 胡媛, 朱凡, 张宗飞. 草酸二甲酯加氢制乙醇酸甲酯反应网络分析及其多相加氢催化剂研究进展[J]. 化工进展, 2023, 42(1): 204-214.
ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214.
序号 | 催化剂 | 制备方法 | 压力/MPa | 温度/℃ | 液时空速/h-1 | 氢酯物质的量比 | DMO转化率/% | MG选择性/% | 稳定性 | 发表年份 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Cu/AC | 蒸氨法 | 2.5 | 220 | 0.18 | 120 | 83 | 92 | 120h | 2016 | [ |
2 | NaCu/SiO2 | 蒸氨浸渍法 | 2.5 | 200 | 1.5 | 80 | 84 | 99.8 | — | 2020 | [ |
3 | Cu3 /CeO2 | 原子迁移法 | 2.5 | 200 | 6.0 | 80 | 100 | 95 | — | 2019 | [ |
4 | Cu/NASH | 硬模版法 | 2.5 | 195 | 2.0 | 70 | 90 | 54 | 150h | 2019 | [ |
5 | SP-Cu/SiO2 | 等离子体轰击 | 3.0 | 240 | 0.5 | 150 | 16 | 80 | 30h | 2018 | [ |
6 | 20Cu-1Ni-3Ag/SiO2 | 蒸氨法 | 2.0 | 220 | 0.7 | 80 | 89 | 83.9 | — | 2018 | [ |
7 | CuNi/SiO2 | 水热法 | 2.0 | 200 | 0.5 | 150 | 90 | 90 | 100h | 2017 | [ |
8 | Cu/HZSM5 | 蒸氨法 | 3.0 | 220 | 0.5 | 80 | 99.85 | 93.18 | — | 2016 | [ |
9 | CuAg/SiO2 | 沉淀法 | 2.0 | 230 | 0.8 | 30 | 92.3 | 83.6 | 500h | 2015 | [ |
10 | Cu/SiO2 | 蒸氨法 | 2~2.5 | 200 | 0.3~0.7 | 40~60 | ≥80 | ≥80 | — | 2014 | [ |
11 | CuAg/SiO2 | 不详 | 2.5 | 195 | 0.7 | 100 | 98.8 | 75.2 | 900h | 2012 | [ |
12 | Cu/HPA | 蒸氨法 | 2.5 | 210 | 0.4 | 150 | 85 | 75 | 120h | 2015 | [ |
13 | CuAg/Ni-foam | 浸渍法 | 2.5 | 210 | 0.25 | 200 | 96 | 96 | 200 | 2017 | [ |
14 | Cu/ZrO2-SiO2 | 蒸氨法 | 2.0 | 200 | 0.3 | 150 | 91.6 | 88.9 | 100h | 2017 | [ |
15 | Cu/B-AC | 浸渍法 | 2.4 | 230 | 1.0 | 180 | 73.4 | 65.9 | 130h | 2020 | [ |
16 | Cu/RGO | 超声浸渍 | 2.5 | 210 | 0.257 | 200 | >90 | >90 | 300h | 2018 | [ |
17 | CuCe/SiO2 | 蒸氨法 | 2.0 | 185 | 1.2 | 100 | 65.3 | 91 | — | 2021 | [ |
18 | Ag/AC-N | 浸渍法 | 3.0 | 220 | 0.6 | 80 | 100 | 96 | 150h | 2017 | [ |
19 | Ag-B/SiO2 | 蒸氨-浸渍 | 1.5 | 220 | 0.28 | 150 | 100 | 88.3 | 300h | 2018 | [ |
20 | 负载型 | 不详 | 2.0 | 186 | 0.5 | 20 | 99.3 | 83.0 | — | 2018 | [ |
21 | Ag/SBA-15 | 浸渍法 | 3.0 | 200 | 0.6 | 100 | 99 | 94 | 100h | 2013 | [ |
22 | 15Ag/SiO2 | 溶胶凝胶法 | 2.5 | 220 | 0.2 | 100 | 100 | 92 | 120h | 2010 | [ |
23 | Ag-in/hCNT | 浸渍法 | 3.0 | 220 | 0.6 | 80 | >99% | >98% | 200h | 2016 | [ |
24 | Ag/Ti-KCC | 浸渍法 | 3.0 | 200 | 1.75 | 100 | 98 | 95 | 100h | 2019 | [ |
25 | Ru/AC-HNO3 | 浸渍法 | 5 | 90 | — | — | 100 | 92.3 | 釜式 | 2021 | [ |
26 | Ni-Foam | 水热法 | 2.5 | 230 | 0.44 | 180 | 99 | 95 | 1000h | 2019 | [ |
27 | Ni2P-TiO2 | 浸渍法 | 3.0 | 230 | 0.1 | 300 | 100 | 76 | 3600h | 2016 | [ |
28 | CoP/SiO2 | 浸渍法 | 3.0 | 240 | 0.28 | 160 | 94.6 | 88.1 | 300h | 2022 | [ |
29 | Au-Fe/ZrO2 | 超声分解法 | 2.5 | 200 | 0.257 | 200 | 100 | 95 | 300h | 2020 | [ |
30 | Ni3P/RB-MSN | 浸渍法 | 2.5 | 190 | 0.44 | 90 | 100 | 85 | 500h | 2021 | [ |
表1 近期公开报道的不同催化剂上DMO加氢制MG催化剂性能
序号 | 催化剂 | 制备方法 | 压力/MPa | 温度/℃ | 液时空速/h-1 | 氢酯物质的量比 | DMO转化率/% | MG选择性/% | 稳定性 | 发表年份 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Cu/AC | 蒸氨法 | 2.5 | 220 | 0.18 | 120 | 83 | 92 | 120h | 2016 | [ |
2 | NaCu/SiO2 | 蒸氨浸渍法 | 2.5 | 200 | 1.5 | 80 | 84 | 99.8 | — | 2020 | [ |
3 | Cu3 /CeO2 | 原子迁移法 | 2.5 | 200 | 6.0 | 80 | 100 | 95 | — | 2019 | [ |
4 | Cu/NASH | 硬模版法 | 2.5 | 195 | 2.0 | 70 | 90 | 54 | 150h | 2019 | [ |
5 | SP-Cu/SiO2 | 等离子体轰击 | 3.0 | 240 | 0.5 | 150 | 16 | 80 | 30h | 2018 | [ |
6 | 20Cu-1Ni-3Ag/SiO2 | 蒸氨法 | 2.0 | 220 | 0.7 | 80 | 89 | 83.9 | — | 2018 | [ |
7 | CuNi/SiO2 | 水热法 | 2.0 | 200 | 0.5 | 150 | 90 | 90 | 100h | 2017 | [ |
8 | Cu/HZSM5 | 蒸氨法 | 3.0 | 220 | 0.5 | 80 | 99.85 | 93.18 | — | 2016 | [ |
9 | CuAg/SiO2 | 沉淀法 | 2.0 | 230 | 0.8 | 30 | 92.3 | 83.6 | 500h | 2015 | [ |
10 | Cu/SiO2 | 蒸氨法 | 2~2.5 | 200 | 0.3~0.7 | 40~60 | ≥80 | ≥80 | — | 2014 | [ |
11 | CuAg/SiO2 | 不详 | 2.5 | 195 | 0.7 | 100 | 98.8 | 75.2 | 900h | 2012 | [ |
12 | Cu/HPA | 蒸氨法 | 2.5 | 210 | 0.4 | 150 | 85 | 75 | 120h | 2015 | [ |
13 | CuAg/Ni-foam | 浸渍法 | 2.5 | 210 | 0.25 | 200 | 96 | 96 | 200 | 2017 | [ |
14 | Cu/ZrO2-SiO2 | 蒸氨法 | 2.0 | 200 | 0.3 | 150 | 91.6 | 88.9 | 100h | 2017 | [ |
15 | Cu/B-AC | 浸渍法 | 2.4 | 230 | 1.0 | 180 | 73.4 | 65.9 | 130h | 2020 | [ |
16 | Cu/RGO | 超声浸渍 | 2.5 | 210 | 0.257 | 200 | >90 | >90 | 300h | 2018 | [ |
17 | CuCe/SiO2 | 蒸氨法 | 2.0 | 185 | 1.2 | 100 | 65.3 | 91 | — | 2021 | [ |
18 | Ag/AC-N | 浸渍法 | 3.0 | 220 | 0.6 | 80 | 100 | 96 | 150h | 2017 | [ |
19 | Ag-B/SiO2 | 蒸氨-浸渍 | 1.5 | 220 | 0.28 | 150 | 100 | 88.3 | 300h | 2018 | [ |
20 | 负载型 | 不详 | 2.0 | 186 | 0.5 | 20 | 99.3 | 83.0 | — | 2018 | [ |
21 | Ag/SBA-15 | 浸渍法 | 3.0 | 200 | 0.6 | 100 | 99 | 94 | 100h | 2013 | [ |
22 | 15Ag/SiO2 | 溶胶凝胶法 | 2.5 | 220 | 0.2 | 100 | 100 | 92 | 120h | 2010 | [ |
23 | Ag-in/hCNT | 浸渍法 | 3.0 | 220 | 0.6 | 80 | >99% | >98% | 200h | 2016 | [ |
24 | Ag/Ti-KCC | 浸渍法 | 3.0 | 200 | 1.75 | 100 | 98 | 95 | 100h | 2019 | [ |
25 | Ru/AC-HNO3 | 浸渍法 | 5 | 90 | — | — | 100 | 92.3 | 釜式 | 2021 | [ |
26 | Ni-Foam | 水热法 | 2.5 | 230 | 0.44 | 180 | 99 | 95 | 1000h | 2019 | [ |
27 | Ni2P-TiO2 | 浸渍法 | 3.0 | 230 | 0.1 | 300 | 100 | 76 | 3600h | 2016 | [ |
28 | CoP/SiO2 | 浸渍法 | 3.0 | 240 | 0.28 | 160 | 94.6 | 88.1 | 300h | 2022 | [ |
29 | Au-Fe/ZrO2 | 超声分解法 | 2.5 | 200 | 0.257 | 200 | 100 | 95 | 300h | 2020 | [ |
30 | Ni3P/RB-MSN | 浸渍法 | 2.5 | 190 | 0.44 | 90 | 100 | 85 | 500h | 2021 | [ |
1 | 段新平, 赵威, 叶林敏, 等. 可生物降解聚酯单体乙醇酸甲酯的催化合成研究进展[J]. 厦门大学学报(自然科学版), 2020, 59(5): 664-678. |
DUAN Xinping, ZHAO Wei, YE Linmin, et al. Progresses in catalytic synthesis of methyl glycolate as biodegradable polyester monomer[J]. Journal of Xiamen University (Natural Science), 2020, 59(5): 664-678. | |
2 | YUE Hairong, MA Xinbin, GONG Jinlong. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol[J]. Accounts of Chemical Research, 2014, 47(5): 1483-1492. |
3 | YAN Weiqi, ZHANG Junbo, XIAO Ling, et al. Toward rational catalyst design for partial hydrogenation of dimethyl oxalate to methyl glycolate: a descriptor-based microkinetic analysis[J]. Catalysis Science & Technology, 2019, 9(20): 5763-5773. |
4 | SONG Yanbo, ZHANG Jian, Jing LYU, et al. Hydrogenation of dimethyl oxalate over copper-based catalysts: acid-base properties and reaction paths[J]. Industrial & Engineering Chemistry Research, 2015, 54(40): 9699-9707. |
5 | 尹安远, 戴维林, 范康年. 草酸二甲酯催化加氢合成乙二醇过程的热力学计算与分析[J]. 石油化工, 2008, 37(1): 62-66. |
YIN Anyuan, DAI Weilin, FAN Kangnian. Thermodynamics of ethylene glycol synthesis via hydrogenation of dimethyl oxalate[J]. Petrochemical Technology, 2008, 37(1): 62-66. | |
6 | 李竹霞, 钱志刚, 赵秀阁, 等. Cu/SiO2催化剂上草酸二甲酯加氢反应的研究[J]. 化学反应工程与工艺, 2004, 20(2): 121-128. |
LI Zhuxia, QIAN Zhigang, ZHAO Xiuge, et al. Studies on hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst[J]. Chemical Reaction Engineering and Technology, 2004, 20(2): 121-128. | |
7 | YU B Y, CHIEN I L. Design and optimization of dimethyl oxalate (DMO) hydrogenation process to produce ethylene glycol (EG)[J]. Chemical Engineering Research and Design, 2017, 121: 173-190. |
8 | 安江伟. 铜基催化剂表面草酸二甲酯选择性加氢反应的密度泛函理论研究[D]. 太原: 太原理工大学, 2020. |
AN Jiangwei. Density funtional theory study on selective hydrogenation of dimethyl oxalate over copper-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
46 | OUYANG Mengyao, WANG Yue, ZHANG Jian, et al. Three dimensional Ag/KCC-1 catalyst with a hierarchical fibrous framework for the hydrogenation of dimethyl oxalate[J]. RSC Advances, 2016, 6(16): 12788-12791. |
47 | CHENG Shuai, MENG Tao, MAO Dongsen, et al. Ni-modified Ag/SiO2 catalysts for selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. Nanomaterials, 2022, 12(3): 407. |
48 | HU Menglin, YAN Yin, DUAN Xinping, et al. Effective anchoring of silver nanoparticles onto N-doped carbon with enhanced catalytic performance for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Catalysis Communications, 2017, 100: 148-152. |
49 | DONG Guilin, CAO Yueqiang, ZHENG Sainan, et al. Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. Journal of Catalysis, 2020, 391: 155-162. |
50 | ZHU Jian, ZHAO Guofeng, SUN Weidong, et al. Superior FeNi3-FeO x /Ni-foam catalyst for gas-phase hydrogenation of dimethyl oxalate to ethanol[J]. Applied Catalysis B: Environmental, 2020, 270: 118873. |
51 | GIORGIANNI Gianfranco, MEBRAHTU Chalachew, PERATHONER Siglinda, et al. Hydrogenation of dimethyl oxalate to ethylene glycol on Cu/SiO2 catalysts prepared by a deposition-decomposition method: optimization of the operating conditions and pre-reduction procedure[J]. Catalysis Today, 2022, 390/391: 343-353. |
9 | SUN Jian, YU Jiafeng, MA Qingxiang, et al. Freezing copper as a noble metal-like catalyst for preliminary hydrogenation[J]. Science Advances, 2018, 4(12): eaau3275. |
10 | LU Xiaodong, WANG Guofu, YANG Yu, et al. A boron-doped carbon aerogel-supported Cu catalyst for the selective hydrogenation of dimethyl oxalate[J]. New Journal of Chemistry, 2020, 44(8): 3232-3240. |
11 | 赵鹬, 王世栋, 贠宏飞, 等. 草酸二甲酯加氢反应中铜催化剂稳定性的研究进展[J]. 化工进展, 2018, 37(9): 3393-3400. |
ZHAO Yu, WANG Shidong, YUAN Hongfei, et al. Recent progress on the stabilization of copper catalysts for the hydrogenation of dimethyl oxalate[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3393-3400. | |
12 | WEN Chao, CUI Yuanyuan, CHEN Xi, et al. Reaction temperature controlled selective hydrogenation of dimethyl oxalate to methyl glycolate and ethylene glycol over copper-hydroxyapatite catalysts[J]. Applied Catalysis B: Environmental, 2015, 162: 483-493. |
13 | WANG Denghao, ZHANG ChuanCai, ZHU Mingyuan, et al. Highly active and stable ZrO2-SiO2-supported Cu-catalysts for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. ChemistrySelect, 2017, 2(17): 4823-4829. |
14 | ABBAS Mohamed, CHEN Zheng, CHEN Jiangang. Shape-and size-controlled synthesis of Cu nanoparticles wrapped on RGO nanosheet catalyst and their outstanding stability and catalytic performance in the hydrogenation reaction of dimethyl oxalate[J]. Journal of Materials Chemistry A, 2018, 6(39): 19133-19142. |
15 | CUI Yuanyuan, WANG Bin, WEN Chao, et al. Investigation of activated-carbon-supported copper catalysts with unique catalytic performance in the hydrogenation of dimethyl oxalate to methyl glycolate[J]. ChemCatChem, 2016, 8(3): 527-531. |
16 | DONG Guilin, LUO Zuwei, CAO Yueqiang, et al. Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts[J]. Journal of Catalysis, 2021, 401: 252-261. |
17 | 药大卫. 草酸酯加氢铜基催化剂多尺度结构设计与构效关系研究[D]. 天津: 天津大学, 2019. |
YAO Dawei. Multi-scale design and structure effect of Cu-based catalysts for dimethyl oxalate hydrogenation[D]. Tianjin: Tianjin University, 2019. | |
18 | CHEN Chongchong, LIN Ling, YE Runping, et al. Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation[J]. Fuel, 2021, 290: 120083. |
19 | HUANG Huijiang, WANG Bo, WANG Yue, et al. Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate[J]. Catalysis Today, 2020, 358: 68-73. |
20 | 程帅. 草酸二甲酯选择性加氢合成乙醇酸甲酯催化剂的研究[D]. 上海: 上海应用技术大学, 2018. |
CHENG Shuai. Study of catalysts for chemoselective hydrogenation of dimethyl oxalate to methyl glycolate[D]. Shanghai: Shanghai Institute of Technology, 2018. | |
21 | 王登豪, 张传彩, 朱明远, 等. 高效稳定的铜镍催化剂在草酸二甲酯加氢中的应用[J]. 化工学报, 2017, 68(7): 2739-2745, 2957. |
WANG Denghao, ZHANG Chuancai, ZHU Mingyuan, et al. Efficient and stable hydrogenation of dimethyl oxalate via copper-nickel catalysts[J]. CIESC Journal, 2017, 68(7): 2739-2745, 2957. | |
22 | 马俊国, 葛庆杰, 孙剑, 等. 载体硅铝比对Cu/HZSM-5草酸二甲酯加氢催化剂性能的影响[J]. 天然气化工(C1化学与化工), 2016, 41(5): 34-39. |
MA Junguo, GE Qingjie, SUN Jian, et al. Influence of support Si/Al ratio on performance of Cu/HZSM-5 catalyst for dimethyl oxalate hydrogenation[J]. Natural Gas Chemical Industry, 2016, 41(5): 34-39. | |
23 | 郭向前, 钱俊峰. 草酸二甲酯催化加氢制备乙醇酸甲酯工艺研究[J]. 广州化工, 2015, 43(18): 91-93. |
GUO Xiangqian, QIAN Junfeng. Study on the process for catalytic hydrogenation of dimethyl oxalate to methyl glycollate[J]. Guangzhou Chemical Industry, 2015, 43(18): 91-93. | |
24 | 龚海燕. Cu/SiO2催化草酸二甲酯加氢制乙醇酸甲酯的反应性能[J]. 化学反应工程与工艺, 2014, 30(2): 169-174. |
GONG Haiyan. Hydrogenation of dimethyl oxalate to methyl glycolate on Cu/SiO2 catalyst[J]. Chemical Reaction Engineering and Technology, 2014, 30(2): 169-174. | |
25 | 廖湘洲, 卢磊, 宁春利, 等. 草酸二甲酯加氢制乙醇酸甲酯反应铜基催化剂的失活原因分析[J]. 复旦学报(自然科学版), 2012, 51(6): 773-776, 782. |
LIAO Xiangzhou, LU Lei, NING Chunli, et al. Deactivation analysis for copper-based catalysts in hydrogenation of dimehty oxalate to methyl glycolate[J]. Journal of Fudan University (Natural Science), 2012, 51(6): 773-776, 782. | |
26 | CHEN Yanfei, HAN Lupeng, ZHU Jian, et al. High-performance Ag-CuO x nanocomposite catalyst galvanically deposited onto a Ni-foam for gas-phase dimethyl oxalate hydrogenation to methyl glycolate[J]. Catalysis Communications, 2017, 96: 58-62. |
27 | 胡梦麟. 氮杂活性炭载银催化剂用于草酸二甲酯加氢制乙醇酸甲酯的研究[D]. 厦门: 厦门大学, 2017. |
HU Menglin. A study of N-doped activated carbon supported Ag catalysts for the hydrogenation of dimethyl oxalate to methyl glycolate[D]. Xiamen: Xiamen University, 2017. | |
28 | 唐叔平, 高振明, 罗正鸿. 草酸二甲酯加氢制乙醇酸甲酯工艺条件优化[J]. 上海化工, 2018, 43(4): 20-23. |
TANG Shuping, GAO Zhenming, LUO Zhenghong. Optimization on conditions for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Shanghai Chemical Industry, 2018, 43(4): 20-23. | |
29 | ZHENG Jianwei, LIN Haiqiang, ZHENG Xinlei, et al. Highly efficient mesostructured Ag/SBA-15 catalysts for the chemoselective synthesis of methyl glycolate by dimethyl oxalate hydrogenation[J]. Catalysis Communications, 2013, 40: 129-133. |
30 | YIN Anyuan, GUO Xiaoyang, DAI Weilin, et al. High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate[J]. Chemical Communications, 2010, 46(24): 4348-4350. |
31 | ZHENG Jianwei, DUAN Xinping, LIN Haiqiang, et al. Silver nanoparticles confined in carbon nanotubes: on the understanding of confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate[J]. Nanoscale, 2016, 8(11): 5959-5976. |
32 | OUYANG Mengyao, WANG Jian, PENG Bo, et al. Effect of Ti on Ag catalyst supported on spherical fibrous silica for partial hydrogenation of dimethyl oxalate[J]. Applied Surface Science, 2019, 466: 592-600. |
33 | 贺燕, 施建哲, 马奎, 等. Ru基催化剂载体表面改性对草酸二甲酯加氢反应的影响[J]. 应用化工, 2021, 50(2): 275-280, 289. |
HE Yan, SHI Jianzhe, MA Kui, et al. Support modification of Ru-based catalysts for the dimethyl oxalate hydrogenation[J]. Applied Chemical Industry, 2021, 50(2): 275-280, 289. | |
34 | ZHU Jian, CAO Liqun, LI Cuiyu, et al. Nanoporous Ni3P evolutionarily structured onto a Ni foam for highly selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37635-37643. |
35 | CHEN Hongmei, TAN Jingjing, ZHU Yulei, et al. An effective and stable Ni2P/TiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Catalysis Communications, 2016, 73: 46-49. |
36 | ZHUANG Zailang, LI Yihui, CHEN Fang, et al. Synthesis of methyl glycolate by hydrogenation of dimethyl oxalate with a P modified Co/SiO2 catalyst[J]. Chemical Communications, 2022, 58(12): 1958-1961. |
37 | ABBAS Mohamed, ZHANG Juan, CHEN Jiangang. Sonochemical engineering of highly efficient and robust Au nanoparticle-wrapped on Fe/ZrO2 nanorods and their controllable product selectivity in dimethyl oxalate hydrogenation[J]. Catalysis Science & Technology, 2020, 10(4): 1125-1134. |
38 | ZHAO Guofeng, LI Hu, SI Jiaqi, et al. High-performance Ni3P/meso-SiO2 for gas-phase hydrogenation of dimethyl oxalate to methyl glycolate[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(49): 16719-16729. |
39 | YE Runping, LIN Ling, WANG Lucun, et al. Perspectives on the active sites and catalyst design for the hydrogenation of dimethyl oxalate[J]. ACS Catalysis, 2020, 10(8): 4465-4490. |
40 | AN Jiangwei, WANG Xuhui, ZHAO Jinxian, et al. Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: effect of copper valence state[J]. Molecular Catalysis, 2020, 482: 110667. |
41 | YAN Weiqi, ZHANG Junbo, ZHOU Ruijia, et al. Identification of synergistic actions between Cu0 and Cu+ sites in hydrogenation of dimethyl oxalate from microkinetic analysis[J]. Industrial & Engineering Chemistry Research, 2020, 59(52): 22451-22459. |
42 | 廖湘洲, 卢磊, 宁春利, 等. 草酸二甲酯加氢制乙醇酸甲酯催化剂的研究进展[J]. 化工进展, 2011, 30(11): 2349-2356. |
LIAO Xiangzhou, LU Lei, NING Chunli, et al. Recent progress in the catalysts for methyl glycolate synthesis via dimethyl oxalate hydrogenation[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2349-2356. | |
43 | ZHAO Yujun, KONG Lingxin, XU Yuxi, et al. Deactivation mechanism of Cu/SiO2 catalysts in the synthesis of ethylene glycol via methyl glycolate hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12381-12388. |
44 | CHEN Zheng, GE Hui, WANG Pengfei, et al. Insight into the deactivation mechanism of water on active Cu species for ester hydrogenation: experimental and theoretical study[J]. Molecular Catalysis, 2020, 488: 110919. |
45 | 董桂霖, 罗祖伟, 曹约强, 等. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240. |
DONG Guilin, LUO Zuwei, CAO Yueqiang, et al. Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate[J]. CIESC Journal, 2022, 73(1): 232-240. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[5] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[6] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[7] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[8] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[9] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[10] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[11] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[12] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
[13] | 黄能坤, 王梓雯, 王文耕, 王学峰, 谈继淮, 朱新宝. 新型氢化二聚酸乙二醇醚酯的合成及其增塑PVC性能[J]. 化工进展, 2023, 42(5): 2638-2646. |
[14] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[15] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |