化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 580-594.DOI: 10.16085/j.issn.1000-6613.2022-1116
收稿日期:
2022-06-14
修回日期:
2022-08-05
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
张柏林,张深根
作者简介:
张新远(1997—),男,硕士研究生,研究方向为废脱硝催化剂资源化。E-mail:18821798313@163.com。
基金资助:
ZHANG Xinyuan1(), ZHANG Bolin1,2(), ZHANG Shengen1()
Received:
2022-06-14
Revised:
2022-08-05
Online:
2022-10-20
Published:
2022-11-10
Contact:
ZHANG Bolin, ZHANG Shengen
摘要:
废钒钛系脱硝催化剂属于HW50危险废物,富含V、W/Mo和Ti战略金属资源,具有污染性和资源性的双重特性,对其进行回收具有重要的经济价值和环境效益。碱法回收是当前的主流回收工艺。本文主要总结了废钒钛系脱硝催化剂碱浸法和碱焙烧法回收的研究进展,重点分析了采用NaOH、NH4OH、(NH4)2CO3等碱性溶液浸出以及采用NaOH、Na2CO3、CaO等碱性化合物焙烧提取工艺参数及对其中有价金属元素的回收效果。针对当前碱法工艺存在的碱耗量大、能耗高、废液产生量大、污染严重等相应问题,提出了进一步关注点应集中于阐明多种碱性物质之间的协同作用,通过混合碱的耦合反应提升回收效果。本文对降低废钒钛系脱硝催化剂回收能耗,提升碱性化合物利用率和回收产品质量具有良好的指导意义。
中图分类号:
张新远, 张柏林, 张深根. 废钒钛系脱硝催化剂碱法回收研究进展[J]. 化工进展, 2022, 41(S1): 580-594.
ZHANG Xinyuan, ZHANG Bolin, ZHANG Shengen. Research progress on recovery of spent vanadium-titanium based deNO x catalyst with alkaline process[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 580-594.
样品 | TiO2/% | V2O5/% | WO3/% | SO3/% | As2O3/% | Al2O3/% | CaO/% | P2O5/% | 其他/% |
---|---|---|---|---|---|---|---|---|---|
样品A | 84.33 | 0.77 | 4.56 | 3.20 | 0.08 | 1.96 | 1.08 | 0.14 | 3.88 |
样品B | 86.98 | 1.37 | 2.21 | 3.11 | 0.08 | 1.32 | 0.90 | 2.73 | 1.30 |
样品C | 84.83 | 0.84 | 2.7 | 4.3 | 0..30 | 1.25 | 1.70 | 0.12 | 3.96 |
样品D | 74.93 | 2.16 | 4.01 | 10.57 | 0.19 | 1.05 | 1.92 | 0.10 | 5.07 |
表1 几组不同工作环境废钒钛系脱硝催化剂成分(质量分数)
样品 | TiO2/% | V2O5/% | WO3/% | SO3/% | As2O3/% | Al2O3/% | CaO/% | P2O5/% | 其他/% |
---|---|---|---|---|---|---|---|---|---|
样品A | 84.33 | 0.77 | 4.56 | 3.20 | 0.08 | 1.96 | 1.08 | 0.14 | 3.88 |
样品B | 86.98 | 1.37 | 2.21 | 3.11 | 0.08 | 1.32 | 0.90 | 2.73 | 1.30 |
样品C | 84.83 | 0.84 | 2.7 | 4.3 | 0..30 | 1.25 | 1.70 | 0.12 | 3.96 |
样品D | 74.93 | 2.16 | 4.01 | 10.57 | 0.19 | 1.05 | 1.92 | 0.10 | 5.07 |
基础碱液 | 添加物 | W浸出率(最高)/% | V浸出率(最高)/% | 参考文献 |
---|---|---|---|---|
20%Na2CO3 | 无 | 74.17 | 60.00 | [ |
5%~8% NaOH | 74.75 | 99.9 | [ | |
0~10% Na3PO4 | 72.67 | 87.77 | [ | |
0~7% NaNO3 | 74.95 | 88.84 | [ |
表2 不同成分的混合碱液对W、V浸出率对比
基础碱液 | 添加物 | W浸出率(最高)/% | V浸出率(最高)/% | 参考文献 |
---|---|---|---|---|
20%Na2CO3 | 无 | 74.17 | 60.00 | [ |
5%~8% NaOH | 74.75 | 99.9 | [ | |
0~10% Na3PO4 | 72.67 | 87.77 | [ | |
0~7% NaNO3 | 74.95 | 88.84 | [ |
57 | LI Huaquan, GUO Chuanhua. Comprehensive recovery of valuable elements vanadium,titanium,and tungsten from abandoned denitration catalyst[J]. Inorganic Chemicals Industry, 2014, 46(5): 52-54. |
58 | ZHANG Q, WU Y, ZUO T. Green recovery of titanium and effective regeneration of TiO2 photocatalysts from spent selective catalytic reduction catalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3091-3101. |
59 | 贾秀敏, 陈天宝, 黄永, 等. 钠化焙烧法从SCR废脱硝催化剂中回收钛[J]. 钢铁钒钛, 2020, 41(6): 1-5. |
JIA Xiumin, CHEN Tianbao, HUANG Yong, et al. Recovery of titanium from spent SCR Catalyst by sodium roasting[J]. Iron Steel Vanadium Titanium, 2020, 41(6): 1-5. | |
60 | 张春平, 秦川, 杨岗, 等. 失活SCR脱硝催化剂处理技术进展[J]. 华电技术, 2020, 42(1): 8-14+49. |
ZHANG Chunping, QIN Chuan, YANG Gang, et al. Development of processing technology for deactivated SCR denitration catalyst[J]. Integrated Intelligent Energy, 2020, 42(1): 8-14+49. | |
61 | LIU C, SHI J W, GAO C, et al. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO x with NH3: A review[J]. Applied Catalysis A: General, 2016, 522: 54-69. |
62 | 刘子林, 王宝冬, 马瑞新, 等.废SCR催化剂钠化焙烧回收钨和钒的机理探究[J]. 无机盐工业, 2016, 48(7): 63-67. |
LIU Zilin, WANG Baodong, MA Ruixin, et al. Study on mechanism of recovery of tungsten and vanadium from waste SCR catalysts by soda roasting[J]. Inorganic Chemicals Industry, 2016, 48(7): 63-67. | |
63 | 刘子林, 林德海, 何发泉, 等. 钠化焙烧法回收废SCR催化剂中钒和钨的浸出机理及浸出动力学研究[J]. 材料导报, 2021, 35(S1): 429-433. |
LIU Zilin, LIN Dehai, HE Faquan, et al. Study of leaching mechanism and kinetics of vanadium and tungsten on the process of recovery spent SCR catalyst by sodium roasted[J]. Materials Reports, 2021, 35(S1): 429-433. | |
64 | CHOI I H, KIM H R, MOON G, et al. Spent V2O5-WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching[J]. Hydrometallurgy, 2018, 175: 292-299. |
65 | MA B, QIU Z, YANG J, et al. Recovery of nano-TiO2 from spent SCR catalyst by sulfuric acid dissolution and direct precipitation[J]. Waste and Biomass Valorization, 2018, 10(10): 3037-3044. |
1 | 王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展[J]. 工业催化, 2019, 27(2): 1-23. |
WANG Xiuwen, LI Lulu, SONG Jingfang, et al. Analysis of NO x emission and control in China and research progress in denitration catalysts[J].Industrial Catalysis, 2019, 27(2): 1-23. | |
2 | DAI Z, WANG L, TANG H, et al. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst[J]. Chemosphere, 2018, 207: 440-448. |
3 | ZHANG Q, WU Y, YUAN H. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Resources, Conservation and Recycling, 2020, 161: 104983. |
4 | BUSCA G, LARRUBIA M A, ARRIGHI L, et al. Catalytic abatement of NO x : Chemical and mechanistic aspects[J]. Catalysis Today, 2005, 107/108: 139-148. |
5 | TAN L, GUO Y, LIU Z, et al. An investigation on the catalytic characteristic of NO reduction in SCR systems[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 53-59. |
6 | ZHANG M, WANG J, ZHANG Y, et al. Simultaneous removal of NO and HgO in flue gas over Co-Ce oxide modified rod-like MnO2 catalyst: Promoting effect of Co doping on activity and SO2 resistance[J]. Fuel, 2020, 276: 118018. |
7 | FERELLA F. A review on management and recycling of spent selective catalytic reduction catalysts[J]. Journal of Cleaner Production, 2020, 246: 118990. |
8 | XU J, CHEN G, GUO F, et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NO x with ammonia: Review[J]. Chemical Engineering Journal, 2018, 353: 507-518. |
9 | CHOI I H, MOON G, LEE J Y, et al. Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process[J]. Journal of Cleaner Production, 2018, 197: 163-169. |
10 | MARBERGER A, FERRI D, RENTSCH D, et al. Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3 [J]. Catalysis Today, 2019, 320: 123-132. |
11 | MARBERGER A, ELSENER M, FERRI D, et al. VO x surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the Vloading and by aging[J]. Catalysts, 2015, 5(4): 1704-1720. |
12 | 王宝冬, 刘子林, 林德海, 等. 废钒-钛系脱硝催化剂回收利用策略与技术进展[J]. 材料导报, 2021, 35(15): 15001-15010. |
66 | CHOI IH, MOON G, LEE JY, et al. Alkali fusion using sodium carbonate for extraction of vanadium and tungsten for the preparation of synthetic sodium titanate from spent SCR catalyst[J]. Sci. Rep., 2019, 9(1): 12316. |
67 | YAO J, CAO Y, WANG J, et al. Successive calcination-oxalate acid leaching treatment of spent SCR catalyst: A highly efficient and selective method for recycling tungsten element[J]. Hydrometallurgy, 2021. 201: 105576. |
68 | 王光应, 刘江峰, 徐辉. 一种失活钒钛钨系脱硝催化剂的回收方法: CN107497416A[P]. 2017-12-22. |
WANG Guanying, LIU Jiangfeng, XU Hui. A recovery method for inactivated vanadium titanium-tungsten denitrification catalyst: CN107497416A[P]. 2017-12-22. | |
69 | WANG B, YANG Q. Optimization of roasting parameters for recovery of vanadium and tungsten from spent SCR catalyst with composite roasting[J]. Processes, 2021, 9: 1923. |
70 | YANG B, ZHOU J, WANG W, et al. Extraction and separation of tungsten and vanadium from spent V2O5-WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124963. |
71 | SONG C, ZHOU D, YANG L, et al. Recovery TiO2 and sodium titanate nanowires as Cd(Ⅱ) adsorbent from waste V2O5-WO3 /TiO2 selective catalytic reduction catalysts by Na2CO3-NaCl-KCl molten salt roasting method[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88: 226-233. |
12 | WANG Baodon, LIU Zilin, LIN Dehai, et al. A review on recovery and utilization of spent V2O5-WO3/TiO2 catalyst[J]. Materials Reports, 2021, 35(15): 15001-15010. |
13 | 曹礼梅, 王青, 张巍, 等. 典型燃煤电厂废SCR催化剂解析及环境管理思考[J]. 装备环境工程, 2018, 15(2): 45-51. |
CAO Limei, WANG Qin, ZHANG Wei,et al. Spent SCR catalysts and environmental management in typical coal-fired power plant[J]. Equipment Environmental Engineering, 2018, 15(2): 45-51. | |
14 | ZHANG Q, WU Y, LI L, et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: Selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12502-12510. |
15 | BARTHOIOMEW C H. Mechanisms of catalyst deactivation[J]. Applied Catalysis A: General, 2001, 212(1): 17-60. |
16 | 王宝冬, 汪国高, 刘斌, 等. 选择性催化还原脱硝催化剂的失活、失效预防、再生和回收利用研究进展[J]. 化工进展, 2013, 32(S1): 133-139. |
WANG Baodon, WANG Guogao, LIU Bin, et al. Development of SCR catalyst deactivation,regeneration and recycling[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 133-139. | |
17 | ZHANG B, DENG L, LLEBAU M, et al. Tar induced deactivation and regeneration of a commercial V2O5-MoO3/TiO2 catalyst during selective catalytic reduction of NO with NH3 [J]. Fuel, 2022, 316: 123324. |
18 | 黄洁慧, 吴俊锋, 任晓鸣, 等. 废SCR脱硝催化剂的再生回收及环境管理[J]. 环境科技, 2015, 28(6): 74-77. |
HANG Jiehui, WU Junfeng, REN Xiaoming, et al. Recycling and environmental management of waste SCR catalyzer[J]. Environmental Science and Technology, 2015, 28(6): 74-77. | |
19 | WANG J, MIAO J, YU W, et al. Study on the local difference of monolithic honeycomb V2O5-WO3/TiO2 denitration catalyst[J]. Materials Chemistry and Physics, 2017, 198: 193-199. |
20 | PETRANIKOVA M, TKACZYK AH, BARTL A, et al. Vanadium sustainability in the context of innovative recycling and sourcing development[J]. Waste Manag, 2020, 113: 521-544. |
21 | 张沛, 吴思明, 方拓拓, 等. 660MW燃煤电厂商用SCR催化剂的失活与再生[J]. 高校化学工程学报, 2017, 31(5): 1186-1192. |
ZHANG Pei, WU Siming, FANG Tuotuo, et al. Deactivation and regeneration of commercial SCR catalysts used in a 660 MW coal-fired power plant[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1186-1192. | |
22 | ARGYLE M, BARTHOLOMEW C. Heterogeneous catalyst deactivation and regeneration: A review[J]. Catalysts, 2015, 5(1): 145-269. |
23 | 张涛, 陈晓利, 孙超, 等. 废钒钛系SCR催化剂有价金属回收与再利用研究进展[J]. 现代化工, 2021, 41(S1): 67-72+77. |
ZHANG Tao, CHENG Xiaoli, SONG Chao, et al. Research progress on recovery and reuse of valuable metals from spent vanadium-titanium SCR catalysts[J]. Modern Chemical Industry, 2021, 41(S1): 67-72+77. | |
24 | 黄力, 王虎, 李倩, 等. V2O5-WO3/TiO2脱硝催化剂回收研究进展[J]. 中国资源综合利用, 2016, 34(4): 34-37. |
HUANG Li, WANG Hu, LI Qian, et al. Research process in recovery of V2O5-WO3/TiO2 denitration catalyst[J]. China Resources Comprehensive Utilization, 2016, 34(4): 34-37. | |
25 | 董子龙, 杨巧文, 贾卓泰, 等. 选择性催化还原脱硝废弃催化剂回收技术研究进展[J]. 化工进展, 2017, 36(S1): 449-456. |
DONG Zilong, YANG Qiaozhuo, JIA Zhuotai, et al. Research progresson recovery technology of spent selective catalyticred uctiondentitroncatalyst[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 449-456. | |
26 | 武文粉. 废脱硝催化剂回收钒钨及载体循环利用过程基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. |
WU Wenfen. Basic research on recovery of vanadium,tungsten and carrier from spent denitrification catalyst[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering, Chinese Academy of Sciences), 2020. | |
27 | 陈颖敏, 谢宗, 王超凡. 燃煤电厂废弃催化剂回收钒的研究[J]. 钢铁钒钛, 2016, 37(4): 69-75. |
CHEN Yingmin, XIE Zong, WANG Chaofan. Study on the recovery of vanadium from waste catalyst in coal-fired power plants[J]. Iron Steel Vanadium Titanium, 2016, 37(4): 69-75. | |
28 | HUO Y, CHANG Z, LI W, et al. Reuse and valorization of vanadium and tungsten from waste V2O5-WO3/TiO2 SCR catalyst[J]. Waste and Biomass Valorization, 2014, 6(2): 159-165. |
29 | SHAO X Z, WANG H Y, YUAN M L, et al. Thermal stability of Si-doped V2O5/WO3-TiO2 for selective catalytic reduction of NO x by NH3 [J]. Rare Metals, 2018, 38(4): 292-298. |
30 | SU Q, MIAO J, LI H, et al. Optimizing vanadium and tungsten leaching with lowered silicon from spent SCR catalyst by pre-mixing treatment[J]. Hydrometallurgy, 2018, 181: 230-239. |
31 | 唐丁玲, 宋浩, 刘丁丁, 等. 废弃脱硝催化剂碱浸提取钒和钨的浸出动力学研究[J]. 环境工程学报, 2017, 11(02): 1093-1100. |
TANG Dingling, SONG Hao, LIU Dingding, et al. Study on leaching kinetics of extracting vanadium and tungsten by sodium hy-droxide from spent SCR catalyst[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 1093-1100. | |
32 | 陈洋, 金科, 陈嘉宇, 等. 废脱硝催化剂钒、钨的浸出-搅拌对浸出率的影响[J]. 功能材料, 2020, 51(3): 3001-3006. |
CHEN Yang, JIN Ke, CHEN Jiayu, et al. Leaching of V and W fromspent SCR catalyst-Effect of agitation on leaching rates[J].Journal of Functional Materials, 2020, 51(3): 3001-3006. | |
33 | 武文粉, 李会泉, 孟子衡, 等. 碱溶法回收废SCR脱硝催化剂中的二氧化钛[J]. 过程工程学报, 2019, 19(S1): 72-80. |
WU Wenfen, LI Huiquan, MENG Ziheng, et al. Recovery of TiO2 from spent SCR denitration catalyst by alkali hydrothermal method[J]. The Chinese Journal of Process Engineering, 2019, 19(S1): 72-80. | |
34 | 戚春萍, 武文粉, 王晨晔, 等. 燃煤电厂废旧SCR脱硝催化剂中TiO2载体的回收与再利用[J]. 化工学报, 2017, 68(11): 4239-4248. |
QI Chunping,WU Wenfen WANG Chenye, et al. Recycling and reuse of TiO2 carrier from waste SCR catalysts used in coal-fired power plants[J]. CIESC Journal, 2017, 68(11): 4239-4248. | |
35 | 贾卓泰, 杨巧文, 郭宋江, 等. 氢氧化钠碱浸SCR废弃催化剂的回收研究[J]. 广东化工, 2017, 44(17): 10-11+54. |
JIA Zhuotai, YANG Qiaowen, GUO Songjiang, et al. Recovery of sSpent Ti-W catalyst by NaOH-leaching[J]. Guangdong Chemical Industry, 2017, 44(17): 10-11+54. | |
36 | 谢宗. 燃煤电厂废弃SCR催化剂中回收有价金属的研究[D]. 北京: 华北电力大学, 2016. |
XIE Zong. Study on recovery of valuable metals from SCR catalyst waste in coal-fired power plants[D]. Beijing: North China Electric Power University, 2016. | |
37 | LEE J Y, LEE H I. Method for leaching precious metals contained in waste denitrification catal using pressure leaching process: EP3115108A4[P]. 2017-11-01. |
38 | KIM J W, LEE W G, HWANG I S, et al. Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching[J]. Journal of Industrial and Engineering Chemistry, 2015, 28: 73-77. |
39 | GUO M, ZHANG M. Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method[J]. J. Hazard Mater., 2015, 286: 402-409. |
40 | ZHOU X, WEI C, LI M, et al. Thermodynamics of vanadium-sulfur-water systems at 298K[J]. Hydrometallurgy, 2011, 106(1/2): 104-112. |
41 | CAO Y, YUAN J, DU H, et al. A clean and efficient approach for recovery of vanadium and tungsten from spent SCR catalyst[J]. Minerals Engineering, 2021, 165: 106857. |
42 | XU H, LIN Q, WANG Y, et al. Promotional effect of niobium substitution on the low-temperature activity of a WO3/CeZrO x monolithic catalyst for the selective catalytic reduction of NO x with NH3 [J]. RSC Adv., 2017, 7(75): 47570-47582. |
43 | LI M, LIU B, ZHENG S, et al. A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching[J]. Journal of Cleaner Production, 2017, 149: 206-217. |
44 | ZHANG C, MIN X, ZHANG J, et al. Reductive clean leaching process of cadmium from hydrometallurgical zinc neutral leaching residue using sulfur dioxide[J]. Journal of Cleaner Production, 2016, 113: 910-918. |
45 | 张贵清, 关文娟, 张启修, 等. 从钨矿苏打浸出液中直接萃取钨的连续运转试验[J]. 中国钨业, 2009, 24(5): 49-52. |
ZHANG Guiqing, GUAN Wenjuan, ZHANG Qixiu, et al. Continuous-running experiment for direct solvent extraction of tungsten from autoclave-soda leaching liquor of scheeite[J]. China Tungsten Industry, 2009, 24(5): 49-52. | |
46 | 陈金清, 熊家任, 林凯. 碱性体系下萃取钒的研究[J]. 有色金属科学与工程, 2014, 5(1): 20-24. |
CHEN Jinqing, XIONG Jiaren, LIN Kai. Vanadium extraction from alkalinity system[J]. Nonferrous Metals Science and Engineering, 2014, 5(1): 20-24. | |
47 | 罗军, 关文娟, 张贵清, 等. Na2CO3高压浸出SCR脱硝废催化剂中的钨和钒[J]. 稀有金属与硬质合金, 2015, 43(6): 1-6+32. |
LUO Jun, GUAN Wenjuan, ZHANG Guiqing, et al. High pressure leaching of tungsten and vandium with sodium carbonate from spent SCR denitration catalyst[J]. Rare Metals and Cemented Carbides, 2015, 43(6): 1-6+32. | |
48 | MOON G, KIM J H, LEE J Y, et al. Leaching of spent selective catalytic reduction catalyst using alkaline melting for recovery of titanium, tungsten, and vanadium[J]. Hydrometallurgy, 2019, 189: 105132. |
49 | KIM J W, HWANG I J. Separation of valuables from spent selective catalytic reduction catalyst leaching solution by fabricated anion extraction resins[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1100-1108. |
50 | ZHANG Q, WU Y, ZUO T. Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system: Thermodynamic, experimental, and kinetic studies[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 471-479. |
51 | CHANG L L Y, SCROGER M G, PHILLIPS B. Alkaline-earth tungstates: Equilibrium and stability in the M-W-O systems[J]. Journal of the American Ceramic Society, 1966, 49(7): 385-390. |
52 | PARKER F J, MCCAULEY R A. Investigation of the system CaO-MgO-V2O5: I, Phase equilibria[J]. Journal of the American Ceramic Society, 1982, 65(7): 349-351. |
53 | DEVRIES R C, ROY R, OSBRN E F. Phase equilibria in the system CaO-TiO2-SiO2 [J]. Journal of the American Ceramic Society, 1955, 38(5): 158-171. |
54 | GAUR R P. Modern hydrometallurgical production methods for tungsten[J]. JOM, 2006, 58(9): 45-49. |
55 | CHOI I H, MOON G, LEE J Y, et al. Hydrometallurgical processing of spent selective catalytic reduction (SCR) catalyst for recovery of tungsten[J]. Hydrometallurgy, 2018, 178: 137-145. |
56 | YAHUI L, FANCHENG M, FUQIANG F, et al. Preparation of rutile titanium dioxide pigment from low-grade titanium slag pretreated by the NaOH molten salt method[J]. Dyes and Pigments, 2016, 125: 384-391. |
57 | 李化全, 郭传华. 废弃脱硝催化剂中有价元素钛钒钨的综合利用研究[J]. 无机盐工业, 2014, 46(5): 52-54. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[4] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[5] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[6] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[7] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[8] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[9] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[10] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[11] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[12] | 胡亚飞, 冯自平, 田佳垚, 黄冲, 宋文吉. 燃料驱动无电热泵系统的节能模拟与运行经济性分析[J]. 化工进展, 2023, 42(3): 1217-1227. |
[13] | 张群力, 黄昊天, 张琳, 赵文强, 张秋月. 喷淋式烟气源热泵冷凝余热回收系统性能分析[J]. 化工进展, 2023, 42(2): 650-657. |
[14] | 王毅斌, 冯敬武, 谭厚章, 李良钰. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展, 2023, 42(2): 985-999. |
[15] | 李栋先, 王佳, 蒋剑春. 超声辅助下皂脚加压水解制备脂肪酸[J]. 化工进展, 2023, 42(1): 409-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |