化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 269-281.DOI: 10.16085/j.issn.1000-6613.2021-1247

• 材料科学与技术 • 上一篇    下一篇

聚合物基热界面材料与导热性能研究进展

陈沛嘉1(), 葛鑫2, 梁伟杰3, 尹爽1, 张志聪1, 吕健儿1, 刘卫东4(), 陈友鹏4(), 葛建芳1()   

  1. 1.仲恺农业工程学院化学化工学院,广东 广州 510225
    2.广东工业大学材料与能源学院,广东 广州 510006
    3.西北工业大学材料科学与工程学院,陕西 西安 710072
    4.广州南洋理工职业学院,广东 广州 510920
  • 收稿日期:2021-06-15 修回日期:2022-01-04 出版日期:2022-10-20 发布日期:2022-11-10
  • 通讯作者: 刘卫东,陈友鹏,葛建芳
  • 作者简介:陈沛嘉(1996—),男,硕士研究生,研究方向为导热材料。E-mail:440582b26sf.cdb@sina.cn
  • 基金资助:
    广东省科技计划重大专项(2015B090925022);广东大学生科技创新培育专项资金(pdjh2021a0248);广东省普通高校重点领域专项(智能制造)(2020ZDZX2079)

Research progress of polymer-based thermal interface materials and thermal conductivity properties

CHEN Peijia1(), GE Xin2, LIANG Weijie3, YIN Shuang1, ZHANG Zhicong1, LYU Jianer1, LIU Weidong4(), CHEN Youpeng4(), GE Jianfang1()   

  1. 1.College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou 510225, Guangdong, China
    2.College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
    3.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
    4.Guangzhou Nanyang Polytechnic Vocational College, Guangzhou 510920, Guangdong, China
  • Received:2021-06-15 Revised:2022-01-04 Online:2022-10-20 Published:2022-11-10
  • Contact: LIU Weidong, CHEN Youpeng, GE Jianfang

摘要:

随着电子产品的小型化、集成化和功能化发展,功率密度及热流密度急剧上升,器件内巨大的散热和温压压力使电子设备的寿命和可靠性受到影响,因此对器件在运行过程中如何有效散热提出了更为苛刻的要求。开发及使用高性能导热基复合材料(热界面材料,TIM)降低接触热阻是解决电子设备散热问题的有效途径之一,热界面材料创新与优化备受关注。本文从基本的导热机理出发,阐述聚合物基热界面材料结构及导热强化方面最新进展,讨论导热填料和聚合物基体对复合材料性能的影响。重点对微纳结构的导热强化(协同)作用、构筑3D高导热微结构、导热填料和基质间的界面微结构和导热互穿网络结构等进行讨论,为设计高性能导热结构、制备开发新型高性能TIM提供参考。

关键词: 聚合物, 界面热材料, 结构, 导热强化

Abstract:

With the trend of miniaturization, integration and functionalization of electronic products, the lifetime and reliability of electronic devices have affected by the huge heat dissipation and temperature-elevated challenge accompanied by sharp increase in the power density and heat flux density, which puts more stringent requirements on how to effectively implement heat dissipate during device operation. The development and use of high-performance thermally conductive composite materials (thermal interface materials, TIM) to reduce contact thermal resistance is one of the effective ways to solve the heat dissipation problem of electronic equipment. The innovation and optimization of thermal interface materials have attracted much attention. On the basis of the heat conduction mechanism, this article expounded the latest developments in polymer-based thermal interface material structure and heat conduction enhancement of polymer-based thermal interface material, such as the influence of thermally conductive fillers and polymer matrix on the properties of composite materials etc.. It was focused on major topics such as the thermal enhancement (synergistic) effect of micro-nano structures, the construction of a 3D high thermal conductivity microstructure, the interface microstructure between the thermally conductive filler and the matrix, and the thermal conductivity interpenetrating network structure etc. with aims to offer consultation for preparation and innovation of novel high-performance TIM by superior thermally conductive structures fabrication.

Key words: polymer, interface thermal material, structure, heat conduction enhancement

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn