化工进展 ›› 2022, Vol. 41 ›› Issue (9): 5055-5064.DOI: 10.16085/j.issn.1000-6613.2021-2421
许亚兵1,2(), 王宝山1,2(), 汪光宗1,2, 张洋1,2
收稿日期:
2021-11-25
修回日期:
2022-03-24
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
王宝山
作者简介:
许亚兵(1995—),男,硕士研究生,研究方向为工业废水处理。E-mail:1004153747@qq.com。
基金资助:
XU Yabing1,2(), WANG Baoshan1,2(), WANG Guangzong1,2, ZHANG Yang1,2
Received:
2021-11-25
Revised:
2022-03-24
Online:
2022-09-25
Published:
2022-09-27
Contact:
WANG Baoshan
摘要:
为探究制药废水中难生化有机物的有效降解方法,本文采用“电Fenton+生物电化学”联合处理制药废水,通过三维荧光光谱(EEMs)及气相色谱-质谱联用法(GC-MS)分析进、出水中溶解性有机物(DOM)和难生化有机物的降解效果,结果如下。①采用电Fenton预处理制药废水,对废水CODCr的平均去除率为28.75%±1.29%,对四氢呋喃的平均去除率为41.18%±2.95%,初步降低废水生物毒性,实现了制药废水的良好预处理效果。②电化学生物反应器对制药废水的化学需氧量(CODCr)有显著的降解效果且明显优于单一生物膜反应器。其中电化学生物反应器运行39天,CODCr从(3438.30~4775.70)mg/L降至(20.18~331.09)mg/L,平均去除率达95.89%±1.63%;单一生物膜反应器运行10天,CODCr从(3943.90~4631.20)mg/L降至(345.08~1264.3)mg/L,平均去除率为79.86%±6.21%。③制药废水中溶解性有机物成分以酪氨酸类蛋白、色氨酸类蛋白、溶解性微生物副产物(SMPs)为主,电化学生物反应器对3个区域的荧光组分降解效果明显,去除率分别为58.88%、37.16%和36.26%。④针对制药废水中的主要难生化有机物四氢呋喃,电化学生物反应器可实现四氢呋喃的有效降解,四氢呋喃去除率高达97.65%。本研究从CODCr去除率、EEMs降解效果和难生化有机物降解效果三方面考察生物电化学系统对制药废水的处理效果,为电化学生物反应器在制药废水处理领域的应用提供科学依据。
中图分类号:
许亚兵, 王宝山, 汪光宗, 张洋. 生物电化学系统对制药废水中难生化有机物的降解[J]. 化工进展, 2022, 41(9): 5055-5064.
XU Yabing, WANG Baoshan, WANG Guangzong, ZHANG Yang. Degradation of refractory organics in the pharmaceutical wastewater by bioelectrochemical system[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5055-5064.
荧光区域 | λEx/nm | λEm/nm | 物质类型 |
---|---|---|---|
Ⅰ | 200~250 | 250~330 | 酪氨酸类蛋白质 |
Ⅱ | 200~250 | 330~380 | 色氨酸类蛋白质 |
Ⅲ | 200~250 | 380~550 | 富里酸类腐殖质 |
Ⅳ | 250~400 | 280~380 | 含苯环蛋白质、溶解性微生物代谢产物 |
Ⅴ | 250~400 | 380~550 | 腐植酸类腐殖质 |
表1 荧光光谱区域及对应物质类型
荧光区域 | λEx/nm | λEm/nm | 物质类型 |
---|---|---|---|
Ⅰ | 200~250 | 250~330 | 酪氨酸类蛋白质 |
Ⅱ | 200~250 | 330~380 | 色氨酸类蛋白质 |
Ⅲ | 200~250 | 380~550 | 富里酸类腐殖质 |
Ⅳ | 250~400 | 280~380 | 含苯环蛋白质、溶解性微生物代谢产物 |
Ⅴ | 250~400 | 380~550 | 腐植酸类腐殖质 |
样品 | 四氢呋喃浓度/µg·L-1 | 乙酸乙酯浓度/µg·L-1 | 二氯甲烷浓度/µg·L-1 | 三氯甲烷浓度/µg·L-1 | CODCr浓度/mg·L-1 |
---|---|---|---|---|---|
进水 | 201847 | 205915 | 521.5 | 474.8 | 4547.9 |
出水 | 4744 | 18.5 | 4.9 | 13.8 | 84.4 |
去除率 | 97.65% | 99.99% | 99.06% | 97.09% | 98.14% |
表2 制药废水主要有机污染物进水、出水含量及去除率
样品 | 四氢呋喃浓度/µg·L-1 | 乙酸乙酯浓度/µg·L-1 | 二氯甲烷浓度/µg·L-1 | 三氯甲烷浓度/µg·L-1 | CODCr浓度/mg·L-1 |
---|---|---|---|---|---|
进水 | 201847 | 205915 | 521.5 | 474.8 | 4547.9 |
出水 | 4744 | 18.5 | 4.9 | 13.8 | 84.4 |
去除率 | 97.65% | 99.99% | 99.06% | 97.09% | 98.14% |
1 | SHAH Ananya, SHAH Manan. Characterisation and bioremediation of wastewater: a review exploring bioremediation as a sustainable technique for pharmaceutical wastewater[J]. Groundwater for Sustainable Development, 2020, 11: 100383. |
2 | SHI Yufei, LI Shengnan, WANG Liye, et al. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation[J]. The Science of the Total Environment, 2021, 778: 146278. |
3 | JOSE Jerin, PHILIP Ligy. Continuous flow pulsed power plasma reactor for the treatment of aqueous solution containing volatile organic compounds and real pharmaceutical wastewater[J]. Journal of Environmental Management, 2021, 286: 112202. |
4 | PRIYA V S, PHILIP Ligy. Treatment of volatile organic compounds in pharmaceutical wastewater using submerged aerated biological filter[J]. Chemical Engineering Journal, 2015, 266: 309-319. |
5 | NI Chenhua, CHANG Chia Yuan, LIN Yu Chung, et al. Simultaneous biodegradation of tetrahydrofuran, 3-buten-1-ol and 1, 4-butanediol in real wastewater by a pilot high-rate UASB reactor[J]. International Biodeterioration & Biodegradation, 2019, 143: 104698. |
6 | 任浩, 王绿菁, 戴楚涵, 等. 含氧杂环及其衍生物的生物降解研究进展[J]. 微生物学报, 2020, 60(12): 2785-2803. |
REN Hao, WANG Lyujing, DAI Chuhan, et al. Research advances in biodegradation of oxygen heterocycles and their derivatives[J]. Acta Microbiologica Sinica, 2020, 60(12): 2785-2803. | |
7 | 孔瑜, 顾卫华, 段锋, 等. 头孢类制药废水中有机污染物的去除特性[J]. 化工进展, 2021, 40(4): 2357-2364. |
KONG Yu, GU Weihua, DUAN Feng, et al. Removal characteristics of organic pollutants in the cephalosporin pharmaceutical wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2357-2364. | |
8 | XU Wenli, ZOU Rusen, JIN Biao, et al. The ins and outs of pharmaceutical wastewater treatment by microbial electrochemical technologies[J]. Sustainable Horizons, 2022, 1: 100003. |
9 | Pello ALFONSO-MUNIOZGUREN, SERNA-GALVIS Efraím A, BUSSEMAKER Madeleine, et al. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems[J]. Ultrasonics Sonochemistry, 2021, 76: 105656. |
10 | MIRZAEI Amir, CHEN Zhi, HAGHIGHAT Fariborz, et al. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review[J]. Sustainable Cities and Society, 2016, 27: 407-418. |
11 | DOS SANTOS Carolina Rodrigues, LEBRON Yuri Abner Rocha, MOREIRA Victor Rezende, et al. Biodegradability, environmental risk assessment and ecological footprint in wastewater technologies for pharmaceutically active compounds removal[J]. Bioresource Technology, 2022, 343: 126150. |
12 | KHAN Nadeem A, KHAN Afzal Husain, TIWARI Preeti, et al. New insights into the integrated application of Fenton-based oxidation processes for the treatment of pharmaceutical wastewater[J]. Journal of Water Process Engineering, 2021, 44: 102440. |
13 | 陈蕾, 王郑. 电化学高级氧化技术在工业废水处理中的应用[J]. 应用化工, 2019, 48(2): 434-437, 443. |
CHEN Lei, WANG Zheng. Application of electrochemical advanced oxidation processes in industrial wastewater treatment[J]. Applied Chemical Industry, 2019, 48(2): 434-437, 443. | |
14 | ADITYOSULINDRO Sandyanto, BARTHE Laurie, Katia GONZÁLEZ-LABRADA, et al. Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste)water[J]. Ultrasonics Sonochemistry, 2017, 39: 889-896. |
15 | CHANGOTRA Rahil, RAJPUT Himadri, DHIR Amit. Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376: 175-184. |
16 | FENG Yan, WANG Xinwei, QI Jingyao, et al. Removal of ibuprofen from municipal sewage by three-dimensional particle electrode combined with a biological aerated filter (TDE-BAF)[J]. Desalination and Water Treatment, 2016, 57(43): 20470-20475. |
17 | 冯岩, 宋亭, 李雪, 等. 电生物耦合技术研究进展[J]. 济南大学学报(自然科学版), 2016, 30(4): 241-249. |
FENG Yan, SONG Ting, LI Xue, et al. Research progress on bioelectrochemical technology[J]. Journal of University of Jinan (Science and Technology), 2016, 30(4): 241-249. | |
18 | 许炉生, 吴伟勇, 张永, 等. 生物膜电极法降解硝基苯的研究[J]. 环境科学与技术, 2011, 34(2): 78-81. |
XU Lusheng, WU Weiyong, ZHANG Yong, et al. Nitrobenzene degradation by biofilm-electrode process[J]. Environmental Science & Technology, 2011, 34(2): 78-81. | |
19 | 魏振东, 刘代云, 廖菊蓉, 等. 苯酚废水的电催化氧化-生物降解工艺研究[J]. 化学与生物工程, 2011, 28(5): 77-80. |
WEI Zhendong, LIU Daiyun, LIAO Jurong, et al. Study on the technology of electrocatalytic oxidation-biodegradation for phenol wasterwater[J]. Chemistry & Bioengineering, 2011, 28(5): 77-80. | |
20 | 康博, 黄卫民, 张应玖, 等. 生物膜电极反应器降解对氨基二甲基苯胺的研究[J]. 高等学校化学学报, 2007, 28(3): 556-558. |
KANG Bo, HUANG Weimin, ZHANG Yingjiu, et al. Studies on the 4-amino-dimethyl-aniline hydrochloride degraded by a bio-electro reactor[J]. Chemical Journal of Chinese Universities, 2007, 28(3): 556-558. | |
21 | 张泽玺, 王宝山, 许亚兵, 等. 电-生物耦合技术降解中药提取废水及微生物群落分析[J]. 精细化工, 2021, 38(2): 387-394. |
ZHANG Zexi, WANG Baoshan, XU Yabing, et al. Degradation of wastewater from traditional Chinese medicine extraction by electro-biological technology and analysis of microbial community[J]. Fine Chemicals, 2021, 38(2): 387-394. | |
22 | 魏复盛. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
WEI Fusheng. Water and wastewater monitoring and analysis methods[M]. 4th ed. Beijing: China Environment Science Press, 2002. | |
23 | 周明罗, 陈海焱, 谌书, 等. 移动床生物膜技术处理校园污水过程中DOM的光谱特征[J]. 光谱学与光谱分析, 2019, 39(7): 2160-2165. |
ZHOU Mingluo, CHEN Haiyan, CHEN Shu, et al. Spectral characteristics of dissolved organic matter in moving bed bio-film reactor process for treating campus sewage[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2160-2165. | |
24 | 陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用[J]. 环境科学与技术, 2015, 38(5): 64-68, 73. |
CHEN Shiyu, LI Yan, LI Aimin. Application of three-dimensional fluorescence spectroscopy in the study of dissolved organic matter[J]. Environmental Science & Technology, 2015, 38(5): 64-68, 73. | |
25 | CHEN Wen, WESTERHOFF Paul, LEENHEER Jerry A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
26 | 赖波, 周岳溪, 王志刚. 铁炭微电解对ABS树脂生产废水中典型特征污染物的降解[J]. 北京工业大学学报, 2013, 39(1): 137-142. |
LAI Bo, ZHOU Yuexi, WANG Zhigang. Degradation of the typical pollutants in ABS resin wastewater by the micro-electrolysis[J]. Journal of Beijing University of Technology, 2013, 39(1): 137-142. | |
27 | 徐鹏程, 郝瑞霞, 张娅, 等. 3BER-S工艺用于再生水深度脱氮同步去除PAEs的可行性[J]. 环境科学, 2016, 37(2): 662-667. |
XU Pengcheng, HAO Ruixia, ZHANG Ya, et al. Feasibility of 3BER-S process for the deep denitrification in synch with the removal of PAEs from reclaimed water[J]. Environmental Science, 2016, 37(2): 662-667. | |
28 | WU Zhenyu, XU Juan, WU Lan, et al. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment[J]. Bioresource Technology, 2022, 344(Pt B): 126274. |
29 | 冯岩, 龙莹莹, 王中伟, 等. 三维电催化曝气生物滤池的构建及降解布洛芬效能[J]. 哈尔滨工业大学学报, 2019, 51(8): 37-45. |
FENG Yan, LONG Yingying, WANG Zhongwei, et al. Construction of three dimensional electrocatalytic biological aerated filter (TDE-BAF) and its degradation efficiency of ibuprofen[J]. Journal of Harbin Institute of Technology, 2019, 51(8): 37-45. | |
30 | 李卫华, 刘怡心, 王伟, 等. 污水处理厂及受纳水体样品的三维荧光光谱解析[J]. 光谱学与光谱分析, 2015, 35(4): 940-945. |
LI Weihua, LIU Yixin, WANG Wei, et al. Analysis of samples from wastewater treatment plant and receiving waters using EEM fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(4): 940-945. | |
31 | 黄健, 闫升, 张华, 等. 农药废水生物处理过程中溶解性有机物特性及荧光强度与COD的关系[J]. 生态与农村环境学报, 2017, 33(9): 830-835. |
HUANG Jian, YAN Sheng, ZHANG Hua, et al. Characteristics and fluorescence intensity of DOM in pesticides wastewater under bio-treatment and their relationships with concentration of COD[J]. Journal of Ecology and Rural Environment, 2017, 33(9): 830-835. | |
32 | 杨金强, 赵南京, 殷高方, 等. 城市生活污水处理过程三维荧光光谱在线监测分析方法[J]. 光谱学与光谱分析, 2020, 40(7): 1993-1997. |
YANG Jinqiang, ZHAO Nanjing, YIN Gaofang, et al. On-line monitoring and analysis method of three-dimensional fluorescence spectrum in urban domestic sewage treatment process[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 1993-1997. | |
33 | 郝瑞霞, 曹可心, 邓亦文. 三维荧光光谱法表征污水中溶解性有机污染物[J]. 分析试验室, 2007, 26(10): 41-44. |
HAO Ruixia, CAO Kexin, DENG Yiwen. Characterization of dissolved organic pollutants in wastewater by three-dimensional fluorescent spectroscopy[J]. Chinese Journal of Analysis Laboratory, 2007, 26(10): 41-44. | |
34 | 张华, 田纪宇, 黄健, 等. 三维荧光光谱技术对污水处理中溶解性有机物转化过程的分析[J]. 环境污染与防治, 2017, 39(4): 375-378, 383. |
ZHANG Hua, TIAN Jiyu, HUANG Jian, et al. Analysis of dissolved organic matter transformation in wastewater treatment process by three dimensional fluorescence spectra technology[J]. Environmental Pollution & Control, 2017, 39(4): 375-378, 383. | |
35 | 帅磊, 李卫华, 申慧彦, 等. 三维荧光光谱评价污水处理厂COD去除效率[J]. 环境工程学报, 2016, 10(4): 2127-2131. |
SHUAI Lei, LI Weihua, SHEN Huiyan, et al. Evaluating COD removal efficiency in wastewater treatment plants using excitation-emission matrix(EEM) fluorescence spectroscopy[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 2127-2131. | |
36 | 黄廷林, 方开凯, 张春华, 等. 荧光光谱结合平行因子分析研究夏季周村水库溶解性有机物的分布与来源[J]. 环境科学, 2016, 37(9): 3394-3401. |
HUANG Tinglin, FANG Kaikai, ZHANG Chunhua, et al. Analysis of distribution characteristics and source of dissolved organic matter from Zhoucun Reservoir in summer based on fluorescence spectroscopy and PARAFAC[J]. Environmental Science, 2016, 37(9): 3394-3401. | |
37 | 姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416. |
YAO Lulu, TU Xiang, YU Huibin, et al. Evaluation of dissolved organic matter removal in municipal wastewater based on fluorescence regional integration[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 411-416. | |
38 | 唐书娟, 王志伟, 吴志超, 等. 膜-生物反应器中溶解性有机物的三维荧光分析[J]. 中国环境科学, 2009, 29(3): 290-295. |
TANG Shujuan, WANG Zhiwei, WU Zhichao, et al. Excitation-emission matrix fluorescence spectra analysis of dissolved organic matter in membrane bioreactor[J]. China Environmental Science, 2009, 29(3): 290-295. | |
39 | 曾萍, 宋永会, 崔晓宇, 等. 含铜黄连素制药废水预处理与资源化技术研究[J]. 中国工程科学, 2013, 15(3): 88-94. |
ZENG Ping, SONG Yonghui, CUI Xiaoyu, et al. Pretreatment and copper recovery from chemosynthesis copper-containing berberine wastewater by Fe-C microelectrolysis and ion exchange combined process[J]. Engineering Sciences, 2013, 15(3): 88-94. | |
40 | 倪丙杰. 好氧颗粒污泥的培养过程、作用机制及数学模拟[D]. 合肥: 中国科学技术大学, 2009. |
NI Bingjie. Formation process, function mechanism and mathematic modeling of the aerobic granular sludge[D]. Hefei: University of Science and Technology of China, 2009. | |
41 | 罗晓, 郑向阳, 赵丛丛, 等. 工业废水生化处理过程中SMP特性研究[J]. 河北科技大学学报, 2017, 38(5): 499-506. |
LUO Xiao, ZHENG Xiangyang, ZHAO Congcong, et al. Characteristic analysis of the soluble microbial products(SMP) in the industrial wastewater treatment process[J]. Journal of Hebei University of Science and Technology, 2017, 38(5): 499-506. | |
42 | 杨毅, 杨霞霞. 城市污水处理过程中DOM的三维荧光光谱及紫外谱图特性[J]. 环境工程学报, 2015, 9(12): 5672-5676. |
YANG Yi, YANG Xiaxia. Characteristic of three dimensional fluorescence spectra and UV spectra of DOM during process of urban sewage treatment[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 5672-5676. | |
43 | 陈月, 郭亮, 孙美. 好氧颗粒污泥对污泥碳源的反硝化出水处理效果[J]. 中国海洋大学学报(自然科学版), 2017, 47(9): 104-109. |
CHEN Yue, GUO Liang, SUN Mei. Study on effect of aerobic granules treatment on denitrification effluent used sludge hydrolysate as carbon sources[J]. Periodical of Ocean University of China, 2017, 47(9): 104-109. | |
44 | 摄丽鹏. 高级氧化法处理四氢呋喃废水的试验研究[D]. 西安: 长安大学, 2008. |
SHE Lipeng. The experimental study on the THF wasted water by advanced oxidation processes(AOPs)[D]. Xi’an: Chang’an University, 2008. | |
45 | 周玉央. Pseudomonas oleoorans DT4降解四氢呋喃的特性、机理及去除工艺研究[D]. 杭州: 浙江工业大学, 2011. |
ZHOU Yuyang. Characteristics, mechanism and removal process of thf degradation by pseudomonas oleovorans DT4[D]. Hangzhou: Zhejiang University of Technology, 2011. | |
46 | BERNHARDT D, DIEKMANN H. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain[J]. Applied Microbiology and Biotechnology, 1991, 36(1): 120-123. |
47 | 文刚, 王彤, 黄廷林, 等. 贫营养好氧反硝化菌株的脱氮特性及氮/碳平衡分析[J]. 环境科学, 2020, 41(5): 2339-2348. |
WEN Gang, WANG Tong, HUANG Tinglin, et al. Nitrogen removal performance and nitrogen/carbon balance of oligotrophic aerobic denitrifiers[J]. Environmental Science, 2020, 41(5): 2339-2348. |
[1] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[2] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[3] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[4] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[5] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[6] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[7] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[8] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[9] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[10] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[11] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[12] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[13] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[14] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[15] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |