化工进展 ›› 2022, Vol. 41 ›› Issue (9): 4895-4906.DOI: 10.16085/j.issn.1000-6613.2021-2297
罗源皓1,2(), 林凌1, 郭拥军1(), 杨玉坤1, 熊贵霞1, 任仁1, 屈沅治3
收稿日期:
2021-11-09
修回日期:
2022-01-18
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
郭拥军
作者简介:
罗源皓(1992—),男,博士研究生,助教,研究方向为油田功能化学剂。E-mail:haolyeureka@163.com。
基金资助:
LUO Yuanhao1,2(), LIN Ling1, GUO Yongjun1(), YANG Yukun1, XIONG Guixia1, REN Ren1, QU Yuanzhi3
Received:
2021-11-09
Revised:
2022-01-18
Online:
2022-09-25
Published:
2022-09-27
Contact:
GUO Yongjun
摘要:
纳米材料具有尺寸较小、热稳定性强等性质,使其可作为钻井液处理剂来提高钻井液的抗高温性能。抗高温钻井液用纳米材料一般采用将材料纳米化或将纳米材料与聚合物复合制得,大致可分为无机纳米材料、聚合物纳米球和纳米复合材料三类。此外,对纳米材料进行结构优化可提高其热稳定性和分散性,用于封堵岩层中纳米孔隙、降低钻井液滤失量、改善钻井液流变性和提高钻井液抗温能力。本文简要阐述高温对钻井液性能的影响,分析纳米材料在钻井液中的作用,重点介绍不同类型纳米材料在抗高温(≥150℃)钻井液中的应用,尤其是对钻井液流变性能和降滤失效果的影响。最后指出纳米材料作为钻井液处理剂未来发展应向着环保、合成工艺简化和室内与现场研究相结合等方向突破。
中图分类号:
罗源皓, 林凌, 郭拥军, 杨玉坤, 熊贵霞, 任仁, 屈沅治. 纳米材料在抗高温钻井液中的应用进展[J]. 化工进展, 2022, 41(9): 4895-4906.
LUO Yuanhao, LIN Ling, GUO Yongjun, YANG Yukun, XIONG Guixia, REN Ren, QU Yuanzhi. Progress in the application of nanomaterials in high temperature resistant drilling fluids[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4895-4906.
类型 | 粒径/nm | 研究对象 | 主要效果 |
---|---|---|---|
SiO2[ | 10~20 | 页岩微裂缝 | 堵塞页岩孔隙50.18%,降低渗透率97.56%,提高了井筒稳定性 |
CuO[ | 27~53 | 流变性能 | 钻井液中含有质量分数为0.5%~1% SiO2或CuO,表现出更高的热稳定性,增强80℃下的流变性能 |
ZrO2[ | 27 | 滤失量 | 质量分数为1% ZrO2钻井液滤失量降低47.9% |
Al2O3[ | — | 滤失量 | 滤失量降低43.48% |
锂皂石[ | 25 | 流变性能 | 高温260℃老化16h前后具有相同表观黏度16.5mPa·s。220℃老化16h后,表观降黏率为21.2% |
碳纳米管[ | 15 | 导热率、滤失量 | 水基和油基钻井液中分别添加1%碳纳米管,热导率最高分别提高31.8%和40.3%,HTHP滤失量分别降低7.4%和16.67% |
石墨烯[ | — | 滤失量 | 滤失量降低18% |
表1 部分用于钻井液的无机纳米材料
类型 | 粒径/nm | 研究对象 | 主要效果 |
---|---|---|---|
SiO2[ | 10~20 | 页岩微裂缝 | 堵塞页岩孔隙50.18%,降低渗透率97.56%,提高了井筒稳定性 |
CuO[ | 27~53 | 流变性能 | 钻井液中含有质量分数为0.5%~1% SiO2或CuO,表现出更高的热稳定性,增强80℃下的流变性能 |
ZrO2[ | 27 | 滤失量 | 质量分数为1% ZrO2钻井液滤失量降低47.9% |
Al2O3[ | — | 滤失量 | 滤失量降低43.48% |
锂皂石[ | 25 | 流变性能 | 高温260℃老化16h前后具有相同表观黏度16.5mPa·s。220℃老化16h后,表观降黏率为21.2% |
碳纳米管[ | 15 | 导热率、滤失量 | 水基和油基钻井液中分别添加1%碳纳米管,热导率最高分别提高31.8%和40.3%,HTHP滤失量分别降低7.4%和16.67% |
石墨烯[ | — | 滤失量 | 滤失量降低18% |
钻井液配方 | 表观黏度/mPa·s | 塑性黏度/mPa·s | 动切力/Pa | 中压失水/mL | 高温高压失水/mL | 摩擦系数 |
---|---|---|---|---|---|---|
淡水钻井液 | 7.5 | 6.0 | 1.5 | 27.0 | 51.8 | 0.426 |
淡水钻井液+0.5%SDFL | 32.0 | 21.0 | 11 | 5.4 | 21.5 | 0.028 |
饱和盐水钻井液 | 5.0 | 4.0 | 1.0 | 32.0 | 63.5 | 0.438 |
饱和盐水钻井液+0.8%SDFL | 26.0 | 21.0 | 5.0 | 8.2 | 22.0 | 0.057 |
表2 230℃/16h高温老化后,SDFL对不同钻井液配方性能的影响[17]
钻井液配方 | 表观黏度/mPa·s | 塑性黏度/mPa·s | 动切力/Pa | 中压失水/mL | 高温高压失水/mL | 摩擦系数 |
---|---|---|---|---|---|---|
淡水钻井液 | 7.5 | 6.0 | 1.5 | 27.0 | 51.8 | 0.426 |
淡水钻井液+0.5%SDFL | 32.0 | 21.0 | 11 | 5.4 | 21.5 | 0.028 |
饱和盐水钻井液 | 5.0 | 4.0 | 1.0 | 32.0 | 63.5 | 0.438 |
饱和盐水钻井液+0.8%SDFL | 26.0 | 21.0 | 5.0 | 8.2 | 22.0 | 0.057 |
1 | DE SILVA P N K, SIMONS S J R, STEVENS P. Economic impact analysis of natural gas development and the policy implications[J]. Energy Policy, 2016, 88: 639-651. |
2 | AFTAB A, ISMAIL A R, IBUPOTO Z H, et al. Nanoparticles based drilling muds a solution to drill elevated temperature wells: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 1301-1313. |
3 | 孙金声, 黄贤斌, 吕开河, 等. 提高水基钻井液高温稳定性的方法、技术现状与研究进展[J]. 中国石油大学学报(自然科学版), 2019, 43(5): 73-81. |
SUN Jinsheng, HUANG Xianbin, Kaihe LYU, et al. Methods, technical progress and research advance of improving high-temperature stability of water based drilling fluids[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(5): 73-81. | |
4 | 李晨曦. 抗高温水基钻井液研究现状及发展趋势[J]. 西部探矿工程, 2018, 30(7): 65-66. |
LI Chenxi. Research status and development trend of high temperature resistant water-based drilling fluids[J]. West-China Exploration Engineering, 2018, 30(7): 65-66. | |
5 | 卜海, 徐同台, 孙金声, 等. 高温对钻井液中黏土的作用及作用机理[J]. 钻井液与完井液, 2010, 27(2): 23-25, 88. |
BU Hai, XU Tongtai, SUN Jinsheng, et al. The effect of high temperature on clays in drilling fluids[J]. Drilling Fluid & Completion Fluid, 2010, 27(2): 23-25, 88. | |
6 | 张斌. 超深井、超高温钻井液技术研究[D]. 北京: 中国地质大学(北京), 2010. |
ZHANG Bin. The research on drilling fluid technology under ultra-deep well and ultra-temperature[D]. Beijing: China University of Geosciences, 2010. | |
7 | 张红伟. 耐温耐盐系钻井液降滤失剂和抑制剂的研制与应用[D]. 石家庄: 河北科技大学,2018 . |
ZHANG Hongwei. Synthesis and application of filtrate reducers and retardants with resistance to high temperature and salt for drilling fluid[D]. Shijiazhuang: Hebei University of Science and Technology, 2018 . | |
60 | LU Zhen, HUANG Xianbin, SUN Jinsheng, et al. Development of the nano-polymer plugging agent with high temperature tolerance for water-based drilling fluid[J]. Oil Drilling & Production Technology, 2020, 42(5): 587-591. |
61 | LI He, Kaihe LYU, HUANG Xianbin, et al. The synthesis of polymeric nanospheres and the application as high-temperature nano-plugging agent in water based drilling fluid[J]. Frontiers in Chemistry, 2020, 8: 247. |
62 | 林志东. 纳米材料基础与应用[M]. 北京: 北京大学出版社, 2010. |
LIN Zhidong. Fundamentals and Applications of Nanomaterials[M]. Beijing: Peking University Press, 2010. | |
63 | CHANG Xiaofeng, SUN Jinsheng, XU Zhe, et al. A novel nano-lignin-based amphoteric copolymer as fluid-loss reducer in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123979. |
64 | ABDO J, ZAIER R, HASSAN E, et al. ZnO-clay nanocomposites for enhance drilling at HTHP conditions[J]. Surface and Interface Analysis, 2014, 46(10/11): 970-974. |
65 | 曲建峰, 邱正松, 郭保雨, 等. 氧化石墨烯新型抗高温降滤失剂的合成与评价[J]. 钻井液与完井液, 2017, 34(4): 9-14. |
QU Jianfeng, QIU Zhengsong, GUO Baoyu, et al. Synthesis and evaluation of a new graphene oxide high temperature filter loss reducer[J]. Drilling Fluid & Completion Fluid, 2017, 34(4): 9-14. | |
66 | MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Novel hydrophobic associated polymer based nano-silica composite with core-shell structure for intelligent drilling fluid under ultra-high temperature and ultra-high pressure[J]. Progress in Natural Science: Materials International, 2015, 25(1): 90-93. |
67 | SHEN Haokun, Kaihe LYU, HUANG Xianbin, et al. Hydrophobic-associated polymer-based laponite nanolayered silicate composite as filtrate reducer for water-based drilling fluid at high temperature[J]. Journal of Applied Polymer Science, 2020, 137(18): 48608. |
68 | LIU Fei, ZHENG Zheng, WANG Xiuying, et al. Novel modified nano-silica/polymer composite in water-based drilling fluids to plug shale pores[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021: 1-17. |
69 | MA Jingyuan, AN Yuxiu, YU Peizhi. Core–shell structure acrylamide copolymer grafted on nano-silica surface as an anti-calcium and anti-temperature fluid loss agent[J]. Journal of Materials Science, 2019, 54(7): 5927-5941. |
8 | ABDO J, HANEEF M D. Nano-enhanced drilling fluids: pioneering approach to overcome uncompromising drilling problems[J]. Journal of Energy Resources Technology, 2012, 134(1): 014501. |
9 | 刘瑞, 于培志. 抗高温水基钻井液处理剂研究进展[J]. 应用化工, 2021, 50(6): 1618-1621. |
LIU Rui, YU Peizhi. Research progress of high temperature resistant water based drilling fluid additives[J]. Applied Chemical Industry, 2021, 50(6): 1618-1621. | |
10 | VEISI Erfan, HAJIPOUR Mastaneh, BINIAZ DELIJANI Ebrahim. Experimental study on thermal, rheological and filtration control characteristics of drilling fluids: effect of nanoadditives[J]. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2020, 75: 36. |
11 | SENSOY Taner, CHENEVERT Martin E, SHARMA Mukul Mani. Minimizing water invasion in shales using nanoparticles[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: SPE, 2009: 1-16. |
12 | 倪晓骁, 蒋官澄, 王建华, 等. 油基钻井液用憎液性纳米封堵剂[J]. 钻井液与完井液, 2021, 38(3): 298-304. |
NI Xiaoxiao, JIANG Guancheng, WANG Jianhua, et al. Study on a lyophobic nanophase plugging agent for oil base muds[J]. Drilling Fluid & Completion Fluid, 2021, 38(3): 298-304. | |
13 | AHMAD Izhar, AKIMOV Oleg, BOND Paul, et al. Drilling operations in HP/HT environment[C]//Offshore Technology Conference-Asia. Kuala Lumpur, Malaysia. Offshore Technology Conference, 2014: 1-14. |
14 | MAO Hui, QIU Zhengsong, XIE Binqiang, et al. Development and application of ultra-high temperature drilling fluids in offshore oilfield around Bohai Sea Bay Basin, China[C]//Offshore Technology Conference Asia. Kuala Lumpur, Malaysia: OTC, 2016: 1-22. |
15 | 胡继良, 陶士先, 单文军, 等. 超深井高温钻井液技术概况及研究方向的探讨[J]. 地质与勘探, 2012, 48(1): 155-159. |
HU Jiliang, TAO Shixian, SHAN Wenjun, et al. Overview of ultra-deep well high-temperature drilling fluid technology and discussion of its research direction[J]. Geology and Exploration, 2012, 48(1): 155-159. | |
16 | 毛惠. 超高温超高密度水基钻井液技术研究[D]. 东营: 中国石油大学(华东), 2017. |
MAO Hui. Research on the technology of ultra-high temperature and ultra-high density water based drilling fluid[D]. Dongying: China University of Petroleum (Huadong), 2017. | |
17 | MAO Hui, QIU Zhengsong, SHEN Zhonghou, et al. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature[J]. Journal of Petroleum Science and Engineering, 2015, 129: 1-14. |
18 | 鄢捷年. 钻井液工艺学[M]. 2版. 东营: 中国石油大学出版社, 2012. |
YAN Jienian. Drilling fluid technology[M].2nd ed. Dongying: China University of Petroleum Press, 2012. | |
19 | WANG Kai, JIANG Guancheng, LIU Fan, et al. Magnesium aluminum silicate nanoparticles as a high-performance rheological modifier in water-based drilling fluids[J]. Applied Clay Science, 2018, 161: 427-435. |
20 | KARAKOSTA Kokkoni, MITROPOULOS Athanasios C, KYZAS George Z. A review in nanopolymers for drilling fluids applications[J]. Journal of Molecular Structure, 2021, 1227: 129702. |
21 | 郑俨钊, 雷建永, 王桥, 等. 纳米流体研究综述[J]. 当代化工, 2021, 50(3): 724-728. |
ZHENG Yanzhao, LEI Jianyong, WANG Qiao, et al. Summary of nanofluid research[J]. Contemporary Chemical Industry, 2021, 50(3): 724-728. | |
22 | 佘跃惠, 曾琦, 董浩, 等. 纳米材料改变岩石矿物润湿性的研究进展[J]. 科学技术与工程, 2021, 21(8): 2997-3005. |
SHE Yuehui, ZENG Qi, DONG Hao, et al. Development of changing rock mineral wettability with nanomaterials[J]. Science Technology and Engineering, 2021, 21(8): 2997-3005. | |
23 | 李小刚, 谢诗意, 杨兆中, 等. 纳米材料在油田化学工程中的研究进展[J]. 应用化工, 2021, 50(2): 465-469. |
LI Xiaogang, XIE Shiyi, YANG Zhaozhong, et al. Research progress of nanomaterials in oilfield chemical engineering[J]. Applied Chemical Industry, 2021, 50(2): 465-469. | |
24 | 潘一, 廖松泽, 杨双春, 等. 纳米材料在提高原油采收率中的研究进展[J]. 中国材料进展, 2021, 40(3): 210-217. |
PAN Yi, LIAO Songze, YANG Shuangchun, et al. Research on nanomaterials in oilfield for oil recovery enhancement[J]. Materials China, 2021, 40(3): 210-217. | |
25 | 刘吉平, 郝向阳. 聚合物基纳米改性材料[M]. 北京: 科学出版社, 2009. |
LIU Jiping, HAO Xiangyang. olymer-based nano-modified materials[M]. Beijing: Science Press, 2009. | |
26 | MEDHI S, GUPTA D K, SANGWAI J S. Impact of zinc oxide nanoparticles on the rheological and fluid-loss properties, and the hydraulic performance of non-damaging drilling fluid[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103834. |
27 | KANG Yili, SHE Jiping, ZHANG Hao, et al. Strengthening shale wellbore with silica nanoparticles drilling fluid[J]. Petroleum, 2016, 2(2): 189-195. |
28 | PAIAMAN Abouzar Mirzaei, AL-ANAZI Bandar Duraya. Feasibility of decreasing pipe sticking probability using nanoparticles[J]. Nafta, 2009, 60(12): 645-650. |
29 | JAVERI Saket M, HAINDADE Zishaan W, JERE Chaitanya B. Mitigating loss circulation and differential sticking problems using silicon nanoparticles[C]//SPE/IADC Middle East Drilling Technology Conference and Exhibition. Muscat, Oman: SPE, 2011: 1-4. |
30 | SADEGH Hassani Sedigheh, AMROLLAHI Azadeh, RASHIDI Alimorad, et al. The effect of nanoparticles on the heat transfer properties of drilling fluids[J]. Journal of Petroleum Science and Engineering, 2016, 146: 183-190. |
31 | AMANULLAH Md, ALARFAJ Mohammed K, AL-ABDULLATIF Ziad Abdullrahman. Preliminary test results of nano-based drilling fluids for oil and gas field application[C]//SPE/IADC Drilling Conference and Exhibition. Amsterdam, The Netherlands: Society of Petroleum Engineers, 2011: 1-9. |
32 | BARRY Matthew M, JUNG Youngsoo, LEE Jung Kun, et al. Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids[J]. Journal of Petroleum Science and Engineering, 2015, 127: 338-346. |
33 | CHERAGHIAN Goshtasp, WU Qinglin, MOSTOFI Masood, et al. Effect of a novel clay/silica nanocomposite on water-based drilling fluids: improvements in rheological and filtration properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 339-350. |
34 | YANG Xianyu, SHANG Zhenxiao, LIU Hengwei, et al. Environmental-friendly salt water mud with nano-SiO2 in horizontal drilling for shale gas[J]. Journal of Petroleum Science and Engineering, 2017, 156: 408-418. |
35 | MEDHI Srawanti, CHOWDHURY Satyajit, GUPTA Dharmender Kumar, et al. An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1): 91-101. |
36 | MEDHI Srawanti, CHOWDHURY Satyajit, KUMAR Amit, et al. Zirconium oxide nanoparticle as an effective additive for non-damaging drilling fluid: a study through rheology and computational fluid dynamics investigation[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106826. |
37 | ANYANWU Chimaroke, MUSTAPHA UNUBI Momoh. Experimental evaluation of particle sizing in drilling fluid to minimize filtrate losses and formation damage[C]//All Days. August 2-4, 2016. Lagos, Nigeria. SPE, 2016: 1-16. |
38 | XIONG Zhengqiang, FU Fan, LI Xiaodong. Experimental investigation on laponite as ultra-high-temperature viscosifier of water-based drilling fluids[J]. SN Applied Sciences, 2019, 1(11): 1-8. |
39 | FAZELABDOLABADI Babak, KHODADADI Abbas Ali, SEDAGHATZADEH Mostafa. Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes[J]. Applied Nanoscience, 2015, 5(6): 651-659. |
40 | ISMAIL A R, RASHID M A, THAMEEM B. Application of nanomaterials to enhanced the lubricity and rheological properties of water based drilling fluid[J]. IOP Conference Series: Materials Science and Engineering, 2018, 380: 012021. |
41 | ZAIRANI WAN BAKAR Wan, MOHD SAAID Ismail, HAYATI JARNI Husna, et al. An investigation on the effect of silica nanoparticle concentration on oil-based mud rheology and fluid loss control characteristic[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012118. |
42 | YANG Xianyu, YUE Ye, CAI Jihua, et al. Experimental study and stabilization mechanisms of silica nanoparticles based brine mud with high temperature resistance for horizontal shale gas wells[J]. Journal of Nanomaterials, 2015, 2015: 745312. |
43 | AGARWAL Sushant, PHUOC Tran X, SOONG Yee, et al. Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas[J]. The Canadian Journal of Chemical Engineering, 2013, 91(10): 1641-1649. |
44 | LIU Lu, PU Xiaolin, TAO Huaizhi, et al. Pickering emulsion stabilized by organoclay and intermediately hydrophobic nanosilica for high-temperature conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125694. |
45 | 刘飞, 王彦玲, 郭保雨, 等. 改性纳米颗粒稳定的可逆乳化钻井液的制备与性能[J]. 化工进展, 2017, 36(11): 4200-4208. |
LIU Fei, WANG Yanling, GUO Baoyu, et al. Preparation and properties of the reversible invert emulsion drilling fluid stabilized by modified nanoparticles[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4200-4208. | |
46 | 罗米娜, 艾加伟, 陈馥, 等. 油基钻井液用纳米材料CQ-NZC的封堵性能评价[J]. 化工进展, 2015, 34(5): 1395-1400. |
LUO Mina, AI Jiawei, CHEN Fu, et al. Evaluation of sealing characteristics of nano materials CQ-NZC in oil based drilling fluids[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1395-1400. | |
47 | VRYZAS Z, ZASPALIS V, NALBANTIAN L, et al. A comprehensive approach for the development of new magnetite nanoparticles giving smart drilling fluids with superior properties for HP/HT applications[C]//International Petroleum Technology Conference. Bangkok, Thailand: International Petroleum Technology Conference, 2016: 1-17. |
48 | 覃勇, 马克迪, 蒋官澄. 水基钻井液用锂皂石增黏剂的合成及性能研究[J]. 钻井液与完井液, 2016, 33(3): 20-24. |
QIN Yong, MA Kedi, JIANG Guancheng. Synthesis and study on hectorite viscosifier used in water base drilling fluid[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 20-24. | |
49 | HUANG Xianbin, Kaihe LYU, SUN Jinsheng, et al. Enhancement of thermal stability of drilling fluid using laponite nanoparticles under extreme temperature conditions[J]. Materials Letters, 2019, 248: 146-149. |
50 | ABDO J, HANEEF M D. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells[J]. Applied Clay Science, 2013, 86: 76-82. |
51 | ABDO J, AL-SHARJI H, HASSAN E. Effects of nano-sepiolite on rheological properties and filtration loss of water-based drilling fluids[J]. Surface and Interface Analysis, 2016, 48(7): 522-526. |
52 | 陈洪强. 不同形状的改性纳米颗粒在油基钻井液中的应用性能研究[D]. 济南: 山东大学, 2020. |
CHEN Hongqiang. Application of modified nanoparticles with different shapes in oil-based drilling fluid[D]. Jinan: Shandong University, 2020. | |
53 | KHAN M, AL-SALIM H S, ARSANJANI Leila Niloofar. Development of high temperature high pressure (HTHP) water based drilling mud using synthetic polymers, and nanoparticles[J]. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2018,47(1): 172-182. |
54 | HALALI Mohamad Amin, GHOTBI Cyrus, TAHMASBI Kourosh, et al. The role of carbon nanotubes in improving thermal stability of polymeric fluids: experimental and modeling[J]. Industrial & Engineering Chemistry Research, 2016, 55(27): 7514-7534. |
70 | AN Yuxiu, JIANG Guancheng, QI Yourong, et al. Nano-fluid loss agent based on an acrylamide based copolymer “grafted” on a modified silica surface[J]. RSC Advances, 2016, 6(21): 17246-17255. |
71 | CHANG Xiaofeng, SUN Jinsheng, XU Zhe, et al. Synthesis of a novel environment-friendly filtration reducer and its application in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568: 284-293. |
72 | SUN Jinsheng, CHANG Xiaofeng, Kaihe LYU, et al. Environmentally friendly and salt-responsive polymer brush based on lignin nanoparticle as fluid-loss additive in water-based drilling fluids[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621: 126482. |
55 | ISMAIL Abdul Razak, SULAIMAN W R W, JAAFAR M Z, et al. The application of MWCNT to enhance the rheological behavior of drilling fluids at high temperature[J]. Malaysian Journal of Fundamental and Applied Sciences, 2017, 12(3): 95-98. |
56 | MAHMOUD Omar, NASR-EL-DIN Hisham A, VRYZAS Zisis, et al. Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2016: 1-26. |
57 | ZHANG Xianmin, JIANG Guancheng, DONG Tengfei, et al. An amphoteric polymer as a shale borehole stabilizer in water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2018, 170: 112-120. |
58 | XU Jiangen, QIU Zhengsong, ZHAO Xin, et al. A polymer microsphere emulsion as a high-performance shale stabilizer for water-based drilling fluids[J]. RSC Advances, 2018, 8(37): 20852-20861. |
59 | ELOCHUKWU H, SIA L K S L, GHOLAMI R, et al. Data on experimental investigation of methyl ester sulphonate and nanopolystyrene for rheology improvement and filtration loss control of water-based drilling fluid[J]. Data in Brief, 2018, 21: 972-979. |
60 | 卢震, 黄贤斌, 孙金声, 等. 水基钻井液用耐高温纳米聚合物封堵剂的研制[J]. 石油钻采工艺, 2020, 42(5): 587-591. |
[1] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[2] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[3] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[4] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[6] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[7] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[8] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[9] | 葛伟童, 廖亚龙, 李明原, 嵇广雄, 郗家俊. Pd-Fe/MWCNTs双金属催化剂制备及其脱氯动力学[J]. 化工进展, 2023, 42(4): 1885-1894. |
[10] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[11] | 司银芳, 胡语婕, 张凡, 董浩, 佘跃惠. 生物合成氧化锌纳米颗粒材料及其抗菌应用[J]. 化工进展, 2023, 42(4): 2013-2023. |
[12] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
[13] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[14] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[15] | 郝旭波, 牛宝联, 郭昊天, 徐祥和, 张忠斌, 李应林. 相变微胶囊改性及其在光热转换中的应用[J]. 化工进展, 2023, 42(2): 854-871. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |