化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4341-4356.DOI: 10.16085/j.issn.1000-6613.2021-2016
王慧1(), 刘新懿1, 王伟2, 万同1, 厉宗洁3, 王劭妤1(), 程博闻1()
收稿日期:
2021-09-24
修回日期:
2021-11-13
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
王劭妤,程博闻
作者简介:
王慧(1996—),女,硕士研究生,研究方向为生物基功能高分子材料的改性与功能性纳米纤维膜。E-mail:17865551929@163.com。
WANG Hui1(), LIU Xinyi1, WANG Wei2, WAN Tong1, LI Zongjie3, WANG Shaoyu1(), CHENG Bowen1()
Received:
2021-09-24
Revised:
2021-11-13
Online:
2022-08-25
Published:
2022-08-22
Contact:
WANG Shaoyu, CHENG Bowen
摘要:
特殊形貌的纳米纤维可以通过控制静电纺丝过程工艺及参数条件来制备。特殊形貌的纳米纤维具有比普通纳米纤维更大的比表面积和更高的孔隙率,以及掺杂各类有机/无机材料后赋予纤维的多功能性,使其应用研究已经深入能源环境、催化过滤、生物工程、食品安全等诸多领域,成为纳米材料研究的热点领域之一。但特殊形貌纳米纤维存在研究体系不完善、量产化难度高、重现性差等问题。本文通过对多种特殊形貌纳米纤维的成形机理进行阐述,介绍了特殊形貌纳米纤维独特的形貌结构与性能优势,对其在粒子透过、粒子拦截与传输等领域的应用研究进行了概述。此外,本文对特殊形貌的纳米纤维从研究制备到应用过程中面临的局限性进行了讨论,提出建立完善的特殊形貌纳米纤维研究体系,针对应用领域开发功能性特殊形貌纳米纤维膜,从环保性、稳定性角度出发,推进特殊形貌纳米纤维的产业化发展进程。
中图分类号:
王慧, 刘新懿, 王伟, 万同, 厉宗洁, 王劭妤, 程博闻. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356.
WANG Hui, LIU Xinyi, WANG Wei, WAN Tong, LI Zongjie, WANG Shaoyu, CHENG Bowen. Research and application of electrospun nanofibers with special morphology: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4341-4356.
特殊形貌纳米纤维 | 纺丝原料 | 潜在应用领域 | 参考文献 |
---|---|---|---|
蛛网状纳米纤维 | 聚丙烯酸(PAA),聚丙烯酸/聚乙烯醇(PAA/PVA) | 空气过滤材料,湿度传感器 | [ |
尼龙6(PA6),尼龙66(PA66),尼龙6/聚丙烯腈(PA6/PAN),聚酰胺6/聚酰胺66(PA6/PA66),聚酰胺-56(PA-56) | 存储器集成设备,过滤材料及介质 | [ | |
明胶 | 组织工程、能量存储、传感器和催化 | [ | |
间位芳纶(PMIA) | 水/空气过滤芯材、防护服和电绝缘 | [ | |
聚乙烯亚胺/聚乙烯醇(PEI/PVA) | 甲醛传感器 | [ | |
聚偏氟乙烯(PVDF) | 空气过滤 | [ | |
聚氨酯(PU) | 超滤器、特种防护服、超灵敏传感器 | [ | |
壳聚糖/聚乙烯吡络烷酮(CS/PVP) | PM污染高效过滤 | [ | |
珠状纳米纤维 | 乙酸纤维素(CA) | 复合过滤材料 | [ |
聚己内酯(PCL) | 药物控释,骨组织工程 | [ | |
PVDF | 油水分离 | [ | |
聚乳酸(PLA),聚(L-乳酸-ε-己内酯)(PLCL) | 空气过滤,药物释放 | [ | |
聚酰亚胺(PI) | 浆料涂层电极 | [ | |
聚乳酸-乙醇酸(PLGA) | 药物控释,组织工程 | [ | |
聚氧化乙烯(PEO) | 药物载体 | [ | |
聚四氟乙烯(PTFE) | 光催化降解染料 | [ | |
聚丙烯腈(PAN) | 过滤介质 | [ | |
树枝状纳米纤维 | 聚偏氟乙烯(PVDF),聚偏氟乙烯/氟化丙烯酸酯共聚物(PVDF/FA),聚偏二氟乙烯六氟丙烯(PVDF-HFP),聚偏二氟乙烯-接枝聚丙烯酸(PVDF-g-PAA) | 微滤膜,锂离子电池隔膜,pH响应性系统 | [ |
PA6 | 水净化,纳米催化剂 | [ | |
CA | 分离、组织工程、传感器和催化 | [ | |
PLA | 高效空气过滤 | [ | |
聚氨酯(TPU) | 防水透气材料 | [ | |
PMIA | 锂硫电池隔膜 | [ | |
多孔状纳米纤维 | PLA,聚(L-乳酸)(PLLA),聚(L-乳酸)/聚(3-羟丁酸酯-co-3-羟基戊酸酯)(PLLA/PHBV) | 空气过滤,油水分离,气体检测,重金属离子吸附,生物医学、储能设备 | [ |
聚苯乙烯(PS) | 空气净化,可穿戴传感器 | [ | |
PCL | 组织再生 | [ | |
聚(甲基丙烯酸甲酯-co-1,8-萘二甲酰亚胺衍生物-co-罗丹明衍生物) | 水净化传感过滤器 | [ | |
PAN | 高效吸附剂 | [ | |
PAN/PVP | 电致发光传感器 | [ | |
核-壳纳米纤维 | 丝素/聚己内酯(SF/PCL),明胶/聚己内酯 | 血管组织工程支架,骨再生膜 | [ |
胰岛素/聚-D-L-丙交酯-乙交酯 | 纳米纤维支架 | [ | |
聚丙烯腈/聚丁二酸丁二醇酯(PAN/PBS),聚丙烯腈/聚吡咯(PAN/PPy),磷钼酸/聚丙烯腈(PMoA/PAN),TiO2/PAN | 锂离子电池,重金属吸附,空气或水净化、水分解制氢、燃料电池和氢吸附 | [ | |
聚(3,3'''-二十二烷基四噻吩)/聚环氧乙烷(PQT-12/PEO) | 气体传感器 | [ | |
聚(γ-谷氨酸)/聚乳酸(γ-PGA/PLA) | 生物组织工程支架 | [ | |
聚(甘油癸二酸酯)/聚-L-乳酸/聚异丙基丙烯酰胺(PGS/PLLA/PNIPAM) | 药物载体 | [ | |
中空纳米纤维 | 锶铁氧体(SrM) | 吸波材料 | [ |
乙烯吡咯烷酮/乙酸铜[PVP/Cu(CH3COO)2] | 透明电极 | [ | |
PAN/Co3O4,PAN/Mn3O4,PAN/Na | 储能系统,气体吸附,金属电池 | [ | |
Sn/SnO2@C,SnO2,SnO2-CuO | 高储能系统,乙醇气体吸附,光学器件,硫化氢气体传感器 | [ | |
Pr /BiFeO3 | 甲醛气体吸附 | [ | |
苯甲酸/菲咯啉/聚苯胺/聚乙烯吡咯烷酮[Tb(BA)3phen/PANI/Fe3O4/PVP] | 电磁干扰屏蔽、微波吸收、分子电子学和生物医学 | [ | |
ZnO/CoNiO2 | 气体检测 | [ | |
聚碳硅烷(PCS) | 气体分离、高温反应器、催化剂载体等 | [ | |
PLA/PVA | 油水分离系统 | [ | |
聚丙烯腈/聚吡咯烷酮@聚(苯乙烯-共聚丙烯腈)(PAN/PVP@SAN),聚丙烯腈/聚甲基丙烯酸甲酯(PAN/PMMA) | 超级电容器 | [ | |
IrO2 | 超级电容器 | [ | |
带状纳米纤维 | PLLA | 铜离子吸附 | [ |
玉米醇溶蛋白 | 食品包装,金属离子检测 | [ | |
明胶 | 调节多肽结构 | [ | |
PMMA | 油水分离系统 | [ | |
刺状纳米纤维 | 聚芳醚腈/铁酞菁(PEN/FePc) | 传感器、催化剂载体、纳米电子学和组织工程 | [ |
二氧化钛(TiO2),草酸银/二氧化钛(Ag2C2O4/TiO2) | 超级电容器,水净化,抗菌材料 | [ | |
仙人掌状纳米纤维 | PVDF | 能量收集,自清洁表面 | [ |
羽毛状纳米纤维 | 聚苯乙烯/N,Nʹ,Nʹʹ-三(1-(甲氧基甲基)丙基)苯-1,3,5-三甲酰胺(PS/BTA) | 过滤,催化,能量存储 | [ |
表1 不同形态的静电纺纤维
特殊形貌纳米纤维 | 纺丝原料 | 潜在应用领域 | 参考文献 |
---|---|---|---|
蛛网状纳米纤维 | 聚丙烯酸(PAA),聚丙烯酸/聚乙烯醇(PAA/PVA) | 空气过滤材料,湿度传感器 | [ |
尼龙6(PA6),尼龙66(PA66),尼龙6/聚丙烯腈(PA6/PAN),聚酰胺6/聚酰胺66(PA6/PA66),聚酰胺-56(PA-56) | 存储器集成设备,过滤材料及介质 | [ | |
明胶 | 组织工程、能量存储、传感器和催化 | [ | |
间位芳纶(PMIA) | 水/空气过滤芯材、防护服和电绝缘 | [ | |
聚乙烯亚胺/聚乙烯醇(PEI/PVA) | 甲醛传感器 | [ | |
聚偏氟乙烯(PVDF) | 空气过滤 | [ | |
聚氨酯(PU) | 超滤器、特种防护服、超灵敏传感器 | [ | |
壳聚糖/聚乙烯吡络烷酮(CS/PVP) | PM污染高效过滤 | [ | |
珠状纳米纤维 | 乙酸纤维素(CA) | 复合过滤材料 | [ |
聚己内酯(PCL) | 药物控释,骨组织工程 | [ | |
PVDF | 油水分离 | [ | |
聚乳酸(PLA),聚(L-乳酸-ε-己内酯)(PLCL) | 空气过滤,药物释放 | [ | |
聚酰亚胺(PI) | 浆料涂层电极 | [ | |
聚乳酸-乙醇酸(PLGA) | 药物控释,组织工程 | [ | |
聚氧化乙烯(PEO) | 药物载体 | [ | |
聚四氟乙烯(PTFE) | 光催化降解染料 | [ | |
聚丙烯腈(PAN) | 过滤介质 | [ | |
树枝状纳米纤维 | 聚偏氟乙烯(PVDF),聚偏氟乙烯/氟化丙烯酸酯共聚物(PVDF/FA),聚偏二氟乙烯六氟丙烯(PVDF-HFP),聚偏二氟乙烯-接枝聚丙烯酸(PVDF-g-PAA) | 微滤膜,锂离子电池隔膜,pH响应性系统 | [ |
PA6 | 水净化,纳米催化剂 | [ | |
CA | 分离、组织工程、传感器和催化 | [ | |
PLA | 高效空气过滤 | [ | |
聚氨酯(TPU) | 防水透气材料 | [ | |
PMIA | 锂硫电池隔膜 | [ | |
多孔状纳米纤维 | PLA,聚(L-乳酸)(PLLA),聚(L-乳酸)/聚(3-羟丁酸酯-co-3-羟基戊酸酯)(PLLA/PHBV) | 空气过滤,油水分离,气体检测,重金属离子吸附,生物医学、储能设备 | [ |
聚苯乙烯(PS) | 空气净化,可穿戴传感器 | [ | |
PCL | 组织再生 | [ | |
聚(甲基丙烯酸甲酯-co-1,8-萘二甲酰亚胺衍生物-co-罗丹明衍生物) | 水净化传感过滤器 | [ | |
PAN | 高效吸附剂 | [ | |
PAN/PVP | 电致发光传感器 | [ | |
核-壳纳米纤维 | 丝素/聚己内酯(SF/PCL),明胶/聚己内酯 | 血管组织工程支架,骨再生膜 | [ |
胰岛素/聚-D-L-丙交酯-乙交酯 | 纳米纤维支架 | [ | |
聚丙烯腈/聚丁二酸丁二醇酯(PAN/PBS),聚丙烯腈/聚吡咯(PAN/PPy),磷钼酸/聚丙烯腈(PMoA/PAN),TiO2/PAN | 锂离子电池,重金属吸附,空气或水净化、水分解制氢、燃料电池和氢吸附 | [ | |
聚(3,3'''-二十二烷基四噻吩)/聚环氧乙烷(PQT-12/PEO) | 气体传感器 | [ | |
聚(γ-谷氨酸)/聚乳酸(γ-PGA/PLA) | 生物组织工程支架 | [ | |
聚(甘油癸二酸酯)/聚-L-乳酸/聚异丙基丙烯酰胺(PGS/PLLA/PNIPAM) | 药物载体 | [ | |
中空纳米纤维 | 锶铁氧体(SrM) | 吸波材料 | [ |
乙烯吡咯烷酮/乙酸铜[PVP/Cu(CH3COO)2] | 透明电极 | [ | |
PAN/Co3O4,PAN/Mn3O4,PAN/Na | 储能系统,气体吸附,金属电池 | [ | |
Sn/SnO2@C,SnO2,SnO2-CuO | 高储能系统,乙醇气体吸附,光学器件,硫化氢气体传感器 | [ | |
Pr /BiFeO3 | 甲醛气体吸附 | [ | |
苯甲酸/菲咯啉/聚苯胺/聚乙烯吡咯烷酮[Tb(BA)3phen/PANI/Fe3O4/PVP] | 电磁干扰屏蔽、微波吸收、分子电子学和生物医学 | [ | |
ZnO/CoNiO2 | 气体检测 | [ | |
聚碳硅烷(PCS) | 气体分离、高温反应器、催化剂载体等 | [ | |
PLA/PVA | 油水分离系统 | [ | |
聚丙烯腈/聚吡咯烷酮@聚(苯乙烯-共聚丙烯腈)(PAN/PVP@SAN),聚丙烯腈/聚甲基丙烯酸甲酯(PAN/PMMA) | 超级电容器 | [ | |
IrO2 | 超级电容器 | [ | |
带状纳米纤维 | PLLA | 铜离子吸附 | [ |
玉米醇溶蛋白 | 食品包装,金属离子检测 | [ | |
明胶 | 调节多肽结构 | [ | |
PMMA | 油水分离系统 | [ | |
刺状纳米纤维 | 聚芳醚腈/铁酞菁(PEN/FePc) | 传感器、催化剂载体、纳米电子学和组织工程 | [ |
二氧化钛(TiO2),草酸银/二氧化钛(Ag2C2O4/TiO2) | 超级电容器,水净化,抗菌材料 | [ | |
仙人掌状纳米纤维 | PVDF | 能量收集,自清洁表面 | [ |
羽毛状纳米纤维 | 聚苯乙烯/N,Nʹ,Nʹʹ-三(1-(甲氧基甲基)丙基)苯-1,3,5-三甲酰胺(PS/BTA) | 过滤,催化,能量存储 | [ |
19 | LIU Z L. Tunable construction and application of nano-cobweb fibrous material[J]. Materials Reports, 2019, 33(5): 907-916. |
20 | OH H J, PANT H R, KANG Y S, et al. Synthesis and characterization of spider-web-like electrospun mats of meta-aramid[J]. Polymer International, 2012, 61(11): 1675-1682. |
21 | 刘兆麟, 王欣, 张威. 纳米级蛛网纤维膜的制备与空气过滤性能研究[J]. 棉纺织技术, 2017, 45(11): 13-17. |
LIU Z L, WANG X, ZHANG W. Preparation of nano-fiber-nets membrane and its air filtration property study[J]. Cotton Textile Technology, 2017, 45(11): 13-17. | |
22 | DING B, LI C R, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15): 3685. |
23 | WANG X F, DING B, SUN M, et al. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors[J]. Sensors and Actuators B: Chemical, 2010, 144(1): 11-17. |
24 | LIU B W, ZHANG S C, WANG X L, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457: 203-211. |
25 | AWANG N, NASIR A M, YAJID M A M, et al. A review on advancement and future perspective of 3D hierarchical porous aerogels based on electrospun polymer nanofibers for electrochemical energy storage application[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105437. |
26 | WANG X F, DING B, YU J Y, et al. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance[J]. Nanotechnology, 2010, 21(5): 055502. |
27 | LIU H, ZHANG S C, LIU L F, et al. High-performance PM0.3 air filters using self-polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020, 30(13): 1909554. |
28 | 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015, 36(11): 6-11, 19. |
WANG X L, FENG X W, PAN Z J. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015, 36(11): 6-11, 19. | |
29 | FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999, 40(16): 4585-4592. |
30 | AMIRAH MD ZUBIR A, KHAIRUNNISA M P, ATIQAH SURIB N, et al. Electrospinning of PLA with DMF: effect of polymer concentration on the bead diameter of the electrospun fibre[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778: 012087. |
31 | WANG Y F, LAI C L, WANG X W, et al. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25612-25620. |
32 | 陈程, 陈昀, 曹建华, 等. 静电纺纳米纤维/串珠纤维在低阻力过滤材料中的应用[J]. 工程塑料应用, 2015, 43(10): 18-22. |
CHEN Cheng, CHEN Yun, CAO Jianhua, et al. Application of nanofibers/beaded fibers in low resistance filter materials[J]. Engineering Plastics Application, 2015, 43(10): 18-22. | |
33 | 张琼月. 载柚皮苷串珠状纳米纤维膜的药物释放和成骨性能研究[D]. 重庆: 重庆医科大学, 2019. |
ZHANG Q Y. Electrospun naringin-loaded beaded nanofiber with controlled release property for bone tissue engineering applications[D]. Chongqing: Chongqing Medical University, 2019. | |
34 | WANG Z, ZHAO C C, PAN Z J. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration[J]. Journal of Colloid and Interface Science, 2015, 441: 121-129. |
35 | XUE Y Y, GUO X, ZHOU H F, et al. Influence of beads-on-string on Na-ion storage behavior in electrospun carbon nanofibers[J]. Carbon, 2019, 154: 219-229. |
36 | LI Z J, KANG W M, ZHAO H H, et al. A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration[J]. Nanomaterials, 2016, 6(8): 152. |
37 | LI Z J, LIU Y, YAN J, et al. Electrospun polyvinylidene fluoride/fluorinated acrylate copolymer tree-like nanofiber membrane with high flux and salt rejection ratio for direct contact membrane distillation[J]. Desalination, 2019, 466: 68-76. |
38 | ZHANG K, LI Z J, KANG W M, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69. |
39 | 程博闻, 高鲁, SARMAD Bushra, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39: 139-144. |
CHENG B W, GAO L, SARMAD B, et al. Fabrication of polylactic acid tree-like nanofiber membrane and its application in filtration[J]. Journal of Textile Research, 2018, 39(12): 139-144. | |
40 | JU J G, SHI Z J, DENG N P, et al. Designing waterproof breathable material with moisture unidirectional transport characteristics based on a TPU/TBAC tree-like and TPU nanofiber double-layer membrane fabricated by electrospinning[J]. RSC Advances, 2017, 7(51): 32155-32163. |
41 | 邓南平. 锂硫电池用蜂窝多孔碳纳米纤维正极材料与芳纶隔膜的制备及性能研究[D]. 天津: 天津工业大学, 2018. |
DENG N P. Preparation and performance research of honeycomb porous carbon nanofiber cathode material and aramid separator for lithium-sulfur batteries[D]. Tianjin: Tianjin Polytechnic University, 2018. | |
42 | SHEN X L, LI Z J, DENG N P, et al. PVDF/TBAPF6 hierarchical nanofiber gel membrane for lithium ion capacitor with ultrahigh ion conductivity and excellent interfacial compatibility[J]. Electrochimica Acta, 2019, 318: 801-808. |
43 | 刘呈坤, 贺海军, 孙润军, 等. 静电纺制备多孔纳米纤维材料的研究进展[J]. 纺织学报, 2017, 38(3): 168-173. |
LIU C K, HE H J, SUN R J, et al. Research development for preparation of porous electrospun nanomaterials[J]. Journal of Textile Research, 2017, 38(3): 168-173. | |
44 | YALCINKAYA F. A review on advanced nanofiber technology for membrane distillation[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 155892501882490. |
45 | CASPER C L, STEPHENS J S, TASSI N G, et al. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process[J]. Macromolecules, 2004, 37(2): 573-578. |
46 | OMIDINIA-ANARKOLI A, RIMAL R, CHANDORKAR Y, et al. Solvent-induced nanotopographies of single microfibers regulate cell mechanotransduction[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7671-7685. |
47 | WAGNER A, POURSORKHABI V, MOHANTY A K, et al. Analysis of porous electrospun fibers from poly(l-lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(8): 1976-1982. |
1 | CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications, 2021, 27: 100823. |
2 | HUANG W B, TONG Z Y, WANG R Z, et al. A review on electrospinning nanofibers in the field of microwave absorption[J]. Ceramics International, 2020, 46(17): 26441-26453. |
3 | 金婷, 王晓君, 焦丽芳. 静电纺丝技术在二次电池和电催化领域的应用进展[J]. 中国科学: 化学, 2019, 49(5): 692-703. |
JIN T, WANG X J, JIAO L F. Recent progress in electrospinning method for secondary ion batteries and electrocatalysis[J]. Scientia Sinica (Chimica), 2019, 49(5): 692-703. | |
4 | DENG Y K, LU T, CUI J X, et al. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: a review[J]. Separation and Purification Technology, 2021, 277: 119623. |
5 | SAKIB M N, MALLIK A K, RAHMAN M M. Update on chitosan-based electrospun nanofibers for wastewater treatment: a review[J]. Carbohydrate Polymer Technologies and Applications, 2021, 2: 100064. |
6 | 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6): 174-182. |
HONG X L, CHEN X H, ZHANG J Q, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182. | |
7 | KUMAR T S M, KUMAR K S, RAJINI N, et al. A comprehensive review of electrospun nanofibers: food and packaging perspective[J]. Composites Part B: Engineering, 2019, 175: 107074. |
8 | LI M, YU H, XIE Y F, et al. Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material[J]. LWT, 2021, 139: 110800. |
9 | HAIDER A, HAIDER S, KANG I K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology[J]. Arabian Journal of Chemistry, 2018, 11(8): 1165-1188. |
10 | 程翠林, 马佳沛, 王玮琛, 等. 天然产物静电纺纳米纤维在生物医药方面的应用[J]. 应用化学, 2021, 38(6): 605-614. |
CHENG C L, MA J P, WANG W C, et al. Application of electrospinning technology of natural products in biomedicine[J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 605-614. | |
48 | JIANG A Y, PAN Z J. Surface-porous and hollow poly(lactic acid) (SPH-PLA) and surface-porous and Lotus-root-like PLA (SPL-PLA) nanofibres: preparation, quantitative analysis, and modelling[J]. Journal of Nanoparticle Research, 2020, 22(8): 1-21. |
49 | HU M, KANG W M, LI Z J, et al. Zinc(Ⅱ) porphyrin-poly(lactic acid) nanoporous fiber membrane for ammonia gas detection[J]. Journal of Porous Materials, 2016, 23(4): 911-917. |
50 | HU M, KANG W M, CHENG B W, et al. Sensitive and fast optical HCl gas sensor using a nanoporous fiber membrane consisting of poly(lactic acid) doped with tetraphenylporphyrin[J]. Microchimica Acta, 2016, 183(5): 1713-1720. |
51 | ZIA Q, TABASSUM M, LU Z H, et al. Porous poly(L-lactic acid)/chitosan nanofibres for copper ion adsorption[J]. Carbohydrate Polymers, 2020, 227: 115343. |
52 | 刘威, 钟伟, 都有为. 核/壳结构复合纳米材料研究进展[J]. 材料导报, 2007, 21(3): 59-62. |
LIU W, ZHONG W, DU Y W. Research progress in nanocomposites with core/shell structures[J]. Materials Review, 2007, 21(3): 59-62. | |
53 | 周媛, 刘桂阳. 皮/芯结构丝素/聚己内酯超细纤维的包覆率调控及性能[J]. 材料导报, 2018, 32(S2): 183-187. |
ZHOU Y, LIU G Y. Regulation of coating rate of skin-core SF/PCL fibers and its properties[J]. Materials Review, 2018, 32(S2): 183-187. | |
54 | LEE C H, HUNG K C, HSIEH M J, et al. Core-shell insulin-loaded nanofibrous scaffolds for repairing diabetic wounds[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2020, 24: 102123. |
55 | WEI Z Z, GU J Y, ZHANG F R, et al. Core–shell structured nanofibers for lithium ion battery separator with wide shutdown temperature window and stable electrochemical performance[J]. ACS Applied Polymer Materials, 2020, 2(5): 1989-1996. |
56 | LIU D P, SHI Q Q, JIN S, et al. Self-assembled core-shell structured organic nanofibers fabricated by single-nozzle electrospinning for highly sensitive ammonia sensors[J]. InfoMat, 2019, 1(4): 525-532. |
57 | WANG J Q, PAN K, HE Q W, et al. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution[J]. Journal of Hazardous Materials, 2013, 244/245: 121-129. |
11 | ADAMU B F, GAO J, JHATIAL A K, et al. A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings[J]. Materials & Design, 2021, 209: 109942. |
12 | KEIROUZ A, CHUNG M, KWON J, et al. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2020, 12(4): e1626. |
13 | LIU L, XU W H, DING Y C, et al. A review of smart electrospun fibers toward textiles[J]. Composites Communications, 2020, 22100506. |
14 | WU Q, MIAO W S, ZHANG Y D, et al. Mechanical properties of nanomaterials: a review[J]. Nanotechnology Reviews, 2020, 9(1): 259-273. |
15 | 王雪芳, 刘景艳, 王鸿博, 等. 聚乳酸纳米纤维的电纺制备及影响因素[J]. 高分子材料科学与工程, 2014, 30(8): 161-166. |
WANG X F, LIU J Y, WANG H B, et al. Influencing factors of preparation of polylactic acid nanofiber via electrospinning[J]. Polymer Materials Science & Engineering, 2014, 30(8): 161-166. | |
16 | MUJICA-GARCIA A, NAVARRO-BAENA I, KENNY J M, et al. Influence of the processing parameters on the electrospinning of biopolymeric fibers[J]. Journal of Renewable Materials, 2014, 2(1): 23-34. |
17 | 周建华, 陈锋, 丁玎. 静电纺丝技术制备纳米纤维的影响参数研究进展[J]. 科技与创新, 2019(16): 34-35, 37. |
ZHOU J H, CHEN F, DING D. Research progress on the influence parameters of nanofibers prepared by electrospinning technology[J]. Science and Technology & Innovation, 2019(16): 34-35, 37. | |
18 | WANG X F, DING B, YU J Y, et al. Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting[J]. Colloids and Surfaces B: Biointerfaces, 2011, 86(2): 345-352. |
19 | 刘兆麟. 纳米蛛网纤维材料的可控构筑与应用[J]. 材料导报, 2019, 33(5): 907-916. |
58 | HONG S, LEE S, PAIK U. Core-shell tubular nanostructured electrode of hollow carbon nanofiber/manganese oxide for electrochemical capacitors[J]. Electrochimica Acta, 2014, 141: 39-44. |
59 | 刘朋超, 龚静华, 杨曙光, 等. 静电纺丝法制备陶瓷中空纳米纤维的研究进展[J]. 无机材料学报, 2013, 28(6): 571-578. |
LIU P C, GONG J H, YANG S G, et al. Research progress on the preparation of ceramic hollow nanofibers by electrospinning[J]. Journal of Inorganic Materials, 2013, 28(6): 571-578. | |
60 | 康一帆, 张益飞, 焦晓宁. 静电纺中空纳米纤维内部结构的研究进展[J]. 毛纺科技, 2018, 46(12): 13-17. |
KANG Y F, ZHANG Y F, JIAO X N. Research progress on the internal structure of electrospun hollow nanofibers[J]. Wool Textile Journal, 2018, 46(12): 13-17. | |
61 | WANG Z H, ZHAO L, WANG P H, et al. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning[J]. Journal of Alloys and Compounds, 2016, 687: 541-547. |
62 | LIAO R X, WANG H L, ZHANG W Z, et al. High-rate sodium storage performance enabled using hollow Co3O4 nanoparticles anchored in porous carbon nanofibers anode[J]. Journal of Alloys and Compounds, 2021, 868: 159262. |
63 | XIANG H F, LONG Y H, YU X L, et al. A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning[J]. CrystEngComm, 2011, 13(15): 4856. |
64 | 白帆, 吴俊涛, 龚光明, 等. 静电纺丝技术制备聚合物基中空结构材料[J]. 高等学校化学学报, 2013, 34(4): 751-759. |
BAI Fan, WU Juntao, GONG Guangming, et al. Fabrication of polymeric hollow structure by electrospinning[J]. Chemical Journal of Chinese Universities, 2013, 34(4): 751-759. | |
65 | WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013, 1(25): 7290. |
66 | ZHAO T Y, LIU Z Y, NAKATA K, et al. Multichannel TiO2 hollow fibers with enhanced photocatalytic activity[J]. Journal of Materials Chemistry, 2010, 20(24): 5095-5099. |
67 | GAO S W, WANG N, LI S, et al. A multi-wall Sn/SnO2@Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(6): 2465-2472. |
68 | ZHANG M, HUANG X X, XIN H L, et al. Coaxial electrospinning synthesis hollow Mo2C@C core-shell nanofibers for high-performance and long-term lithium-ion batteries[J]. Applied Surface Science, 2019, 473: 352-358. |
69 | YUE G C, LI S, LI D M, et al. Coral-like Au/TiO2 hollow nanofibers with through-holes as a high-efficient catalyst through mass transfer enhancement[J]. Langmuir, 2019, 35(14): 4843-4848. |
70 | KANG S M, HWANG J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment[J]. Chemical Engineering Journal, 2020, 379: 122315. |
71 | CHENG L, MA S Y, WANG T T, et al. Synthesis and characterization of SnO2 hollow nanofibers by electrospinning for ethanol sensing properties[J]. Materials Letters, 2014, 131: 23-26. |
72 | TIE Y, MA S Y, PEI S T, et al. Pr doped BiFeO3 hollow nanofibers via electrospinning method as a formaldehyde sensor[J]. Sensors and Actuators B: Chemical, 2020, 308: 127689. |
73 | PARK K R, CHO H B, LEE J M, et al. Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance[J]. Sensors and Actuators B: Chemical, 2020, 302: 127179. |
74 | AGHAEI Z, GHORANI B, EMADZADEH B, et al. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness[J]. Food Control, 2020, 111: 107065. |
75 | NIE W, YU D G, BRANFORD-WHITE C, et al. Electrospun zein-PVP fibre composite and its potential medical application[J]. Materials Research Innovations, 2012, 16(1): 14-18. |
76 | TOPUZ F, UYAR T. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon[J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 80: 371-378. |
77 | GAO J F, SONG X, HUANG X W, et al. Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J]. Applied Surface Science, 2018, 439: 394-404. |
78 | QIAO Y Q, SHI C P, WANG X L, et al. Electrospun nanobelt-shaped polymer membranes for fast and high-sensitivity detection of metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5401-5413. |
79 | MENG F B, ZHAN Y Q, LEI Y J, et al. Rose thorns-like polymer micro/nanofibers via electrospinning and controlled temperature-induced self-assembly[J]. European Polymer Journal, 2011, 47(8): 1563-1568. |
80 | KIM T W, PARK S J. Synthesis of reduced graphene oxide/thorn-like titanium dioxide nanofiber aerogels with enhanced electrochemical performance for supercapacitor[J]. Journal of Colloid and Interface Science, 2017, 486: 287-295. |
81 | WU X H, CAO L T, SONG J, et al. Thorn-like flexible Ag2C2O4/TiO2 nanofibers as hierarchical heterojunction photocatalysts for efficient visible-light-driven bacteria-killing[J]. Journal of Colloid and Interface Science, 2020, 560: 681-689. |
82 | ZAAROUR B, ZHU L, HUANG C, et al. Fabrication of a polyvinylidene fluoride Cactus-like nanofiber through one-step electrospinning[J]. RSC Advances, 2018, 8(74): 42353-42360. |
83 | BURGARD M, WEISS D, KREGER K, et al. Mesostructured nonwovens with penguin downy feather-like morphology—Top-down combined with bottom-up[J]. Advanced Functional Materials, 2019, 29(34): 1903166. |
84 | NIRMALA R, JEONG J W, OH H J, et al. Electrical properties of ultrafine nylon-6 nanofibers prepared via electrospinning[J]. Fibers and Polymers, 2011, 12(8): 1021-1024. |
85 | NIRMALA R, NAVAMATHAVAN R, EL-NEWEHY M H, et al. Preparation and characterization of electrospun ultrafine polyamide-6 nanofibers[J]. Polymer International, 2011, 60(10): 1475-1480. |
86 | WANG N, WANG X F, DING B, et al. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration[J]. Journal of Materials Chemistry A, 2012, 22(4): 1445-1452. |
87 | ZHANG S C, LIU H, YIN X, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Scientific Reports, 2017, 7: 40550. |
88 | 汪策. 纳米纤维多孔膜的制备及其在空气过滤中的应用[D]. 上海: 东华大学, 2015. |
WANG C. Preparation and characterization of composite porous nanofibrous membranes for air filtration[D]. Shanghai: Donghua University, 2015. | |
89 | HU J P, WANG X F, DING B, et al. One-step electro-spinning/netting technique for controllably preparing polyurethane nano-fiber/net[J]. Macromolecular Rapid Communications, 2011, 32(21): 1729-1734. |
90 | 仲龙刚, 王騊, 王晟. 类蛛网纤维膜的制备及捕获PM污染物研究[J]. 现代纺织技术, 2019, 27(4): 1-7. |
ZHONG L G, WANG T, WANG S. Study on preparation of spider-web-like fiber membrane and particulate matter capture[J]. Advanced Textile Technology, 2019, 27(4): 1-7. | |
91 | ZHANG Q Y, ZHANG Y G, WATTS D C, et al. Electrospun naringin-loaded beaded nanofiber with controlled release property for bone tissue engineering applications[J]. Science of Advanced Materials, 2019, 11(10): 1433-1442. |
92 | 王浩, 温梦, 刘俊鹏, 等. 厚朴酚聚乳酸珠串纤维毡的制备及酶降解药物释放[J]. 辽宁医学院学报, 2013, 34(3): 78-82. |
WANG H, WEN M, LIU J P, et al. The preparation of magnolol entrapped poly lactic acid rosary-like fiber mats and the release of enzyme degradation drug[J]. Journal of Liaoning Medical University, 2013, 34(3): 78-82. | |
93 | 张盼, 潘凯. 结构可控串珠状异质纤维薄膜的制备及在药物释放领域的应用[J]. 高分子材料科学与工程, 2018, 34(7): 167-172. |
ZHANG P, PAN K. Preparation of structure controllable bead-on-string heterogeneous fibers and its application in drug release[J]. Polymer Materials Science & Engineering, 2018, 34(7): 167-172. | |
94 | LI T X, WANG L, HUANG Y F, et al. BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering[J]. Journal of Biomaterials Science, Polymer Edition, 2020, 31(9): 1223-1236. |
95 | LI T X, DING X, TIAN L L, et al. The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs[J]. Materials Science and Engineering C, 2017, 74: 471-477. |
96 | LI T X, DING X, TIAN L L, et al. Engineering BSA-dextran particles encapsulated bead-on-string nanofiber scaffold for tissue engineering applications[J]. Journal of Materials Science, 2017, 52(18): 10661-10672. |
97 | ESMAILIAN S, IRANI S, BAKHSHI H, et al. Biodegradable bead-on-spring nanofibers releasing β-carotene for bone tissue engineering[J]. Materials Science and Engineering: C, 2018, 92: 800-806. |
98 | 张媛. 静电纺载药串珠纤维形态和尺寸的可控性研究[D]. 上海: 东华大学, 2015. |
ZHANG Y. Research on the morphology and size controll ing of electrospun beaded nanofibers for drug encapsulation[D]. Shanghai: Donghua University, 2015. | |
99 | 张梦媛, 黄庆林, 黄岩, 等. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(9): 1-7. |
ZHANG M Y, HUANG Q L, HUANG Y, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application[J]. Journal of Textile Research, 2019, 40(9): 1-7. | |
100 | KADAM V, KYRATZIS I L, TRUONG Y B, et al. Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration[J]. Separation and Purification Technology, 2019, 224: 247-254. |
101 | ZHAO H J, DENG N P, KANG W M, et al. Designing of multilevel-nanofibers-based organic-inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security[J]. Chemical Engineering Journal, 2020, 390: 124571. |
102 | ZHAO H J, DENG N P, KANG W M, et al. Highly multiscale structural poly(vinylidene fluoridehexafluoropropylene)/poly-m-phenyleneisophthalamide separator with enhanced interface compatibility and uniform lithium-ion flux distribution for dendrite-proof lithium-metal batteries[J]. Energy Storage Materials, 2020, 26: 334-348. |
103 | CHENG B W, LI Z J, LI Q X, et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J]. Journal of Membrane Science, 2017, 534: 1-8. |
104 | KANG W M, JU J G, ZHAO H H, et al. Characterization and antibacterial properties of Ag NPs doped nylon 6 tree-like nanofiber membrane prepared by one-step electrospinning[J]. Fibers and Polymers, 2016, 17(12): 2006-2013. |
105 | ZHAO H H, KANG W M, MA X M, et al. Fabrication and catalytic behavior of hierarchically-structured nylon 6 nanofiber membrane decorated with silver nanoparticles[J]. Chinese Journal of Catalysis, 2017, 38(1): 73-82. |
106 | DENG N P, LIU Y, LI Q X, et al. Functional double-layer membrane as separator for lithium-sulfur battery with strong catalytic conversion and excellent polysulfide-blocking[J]. Chemical Engineering Journal, 2020, 382: 122918. |
107 | WANG Z, PAN Z J. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration[J]. Applied Surface Science, 2015, 356: 1168-1179. |
108 | HU M, YIN L H, ZHOU H X, et al. Manganese dioxide-filled hierarchical porous nanofiber membrane for indoor air cleaning at room temperature[J]. Journal of Membrane Science, 2020, 605: 118094. |
109 | CHEN S L, DING C, LIN Y, et al. SERS-active substrate assembled by Ag NW-embedded porous polystyrene fibers[J]. RSC Advances, 2020, 10(37): 21845-21851. |
110 | PUTTI M, SIMONET M, SOLBERG R, et al. Electrospinning poly(ε-caprolactone) under controlled environmental conditions: influence on fiber morphology and orientation[J]. Polymer, 2015, 63: 189-195. |
111 | LIANG F C, KUO C C, CHEN B Y, et al. RGB-switchable porous electrospun nanofiber chemoprobe-filter prepared from multifunctional copolymers for versatile sensing of pH and heavy metals[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16381-16396. |
112 | FENG Z Q, YUAN X, WANG T. Porous polyacrylonitrile/graphene oxide nanofibers designed for high efficient adsorption of chromium ions (Ⅵ) in aqueous solution[J]. Chemical Engineering Journal, 2020, 392: 123730. |
113 | CHENG H, ZHOU Z Y, LIU T. Electro-spinning fabrication of nitrogen, phosphorus co-doped porous carbon nanofiber as an electro-chemiluminescent sensor for the determination of cyproheptadine[J]. RSC Advances, 2020, 10(39): 23091-23096. |
114 | WANG Y, JIANG Y X, ZHANG Y F, et al. Dual functional electrospun core-shell nanofibers for anti-infective guided bone regeneration membranes[J]. Materials Science and Engineering: C, 2019, 98: 134-139. |
115 | KIM S, KIM M, KIM Y K, et al. Core-shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2014, 148/149: 170-176. |
116 | FANG Y, ZHU X Q, WANG N, et al. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing[J]. European Polymer Journal, 2019, 116: 30-37. |
117 | NIU Q J, MA L L, GUO J X, et al. Preparation and characterization of PGS/PLLA@PNIPAM core-shell nanofiber membrane by electrospinning and surface ATRP grafting[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 155892502198896. |
118 | MUBARAK N, REHMAN F, WU J X, et al. Morphology, chemistry, performance trident: insights from hollow, mesoporous carbon nanofibers for dendrite-free sodium metal batteries[J]. Nano Energy, 2021, 86: 106132. |
119 | CHEN J, SONG Y H, SHENG Y, et al. Luminescence properties and Judd-Ofelt analysis of SiO2: Ln3+ (Eu, Tb) hollow nanofibers fabricated by co-axial electrospinning method[J]. Journal of Alloys and Compounds, 2017, 716: 144-155. |
120 | LIU Y W, MA Q L, YANG M, et al. Flexible hollow nanofibers: novel one-pot electrospinning construction, structure and tunable luminescence-electricity-magnetism trifunctionality[J]. Chemical Engineering Journal, 2016, 284: 831-840. |
121 | ALALI K T, LIU T, LIU J Y, et al. Preparation and characterization of ZnO/CoNiO2 hollow nanofibers by electrospinning method with enhanced gas sensing properties[J]. Journal of Alloys and Compounds, 2017, 702: 20-30. |
122 | ZHEN X L, PEI X L, WANG Y F, et al. Crosslinking kinetics of polycarbosilane precursor in ozone atmosphere and the formation mechanism of continuous hollow SiC fiber[J]. Journal of the European Ceramic Society, 2019, 39(6): 2028-2035. |
123 | 李惠军, 李璐璐, 孟琳琳. 中空多孔聚乳酸纤维膜制备及疏水吸油性研究[J]. 现代纺织技术, 2019, 27(3): 1-4. |
LI H J, LI L L, MENG L L. Preparation of poly(lactic acid) porous hollow fiber membrane and studies on hydrophobic oil absorption[J]. Advanced Textile Technology, 2019, 27(3): 1-4. | |
124 | KIM J G, KIM H C, KIM N D, et al. N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@ SAN structure for high performance supercapacitor[J]. Composites Part B: Engineering, 2020, 186: 107825. |
125 | ASARE K, HASAN M F, SHAHBAZI A, et al. A comparative study of porous and hollow carbon nanofibrous structures from electrospinning for supercapacitor electrode material development[J]. Surfaces and Interfaces, 2021, 26: 101386. |
126 | BEKNALKAR S A, TELI A M, HARALE N S, et al. Fabrication of high energy density supercapacitor device based on hollow iridium oxide nanofibers by single nozzle electrospinning[J]. Applied Surface Science, 2021, 546: 149102. |
127 | SHAO H, MA Q L, DONG X T, et al. Novel flexible belt-shaped coaxial microcables with tunable multicolor luminescence, electrical conductivity and magnetism[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(34): 21845-21855. |
[1] | 王喜倩, 尹国强, 郭清兵, 何明. 多巴胺表面修饰角蛋白/聚乳酸纳米纤维膜的制备及性能[J]. 化工进展, 2022, 41(1): 373-381. |
[2] | 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
[3] | 崔卓安, 綦戎辉. 应用静电纺丝技术的电催化剂及载体材料制备研究进展[J]. 化工进展, 2021, 40(3): 1395-1412. |
[4] | 饶瑞晔, 毛竹简, 林晓榆, 郭绍英, 胡家朋. 脱乙酰基改性乙酸纤维薄膜对乳化油分离及积垢机理的探究[J]. 化工进展, 2021, 40(10): 5415-5423. |
[5] | 邓建辉, 杨晓青, 方称辉, 曹栋清, 李梁君, 张国庆, 郭建维. 静电纺丝/静电喷雾技术在电池领域的应用进展[J]. 化工进展, 2021, 40(10): 5600-5614. |
[6] | 李纯, 孙丽霞, 孙建华, 周利琴, 徐大鹏, 张友全, 廖丹葵. 静电纺丝法制备ZnO构建酪氨酸酶生物传感器检测邻苯二酚[J]. 化工进展, 2020, 39(7): 2795-2801. |
[7] | 任欣,金蜀鄂,李玉宝,李吉东. 纳米羟基磷灰石增强聚己内酯/明胶纤维膜的制备及其性能[J]. 化工进展, 2020, 39(4): 1439-1446. |
[8] | 丁姣, 赖锐豪, 陈文杰, 黄素青, 尹国强. 化学助剂优化静电纺角蛋白纳米纤维性能进展[J]. 化工进展, 2020, 39(10): 4155-4163. |
[9] | 吕婷婷,安瑛,刘宇健,李好义,谭晶,杨卫民. 静电纺丝制备蛋清蛋白/聚氧化乙烯纳米纤维[J]. 化工进展, 2019, 38(12): 5487-5491. |
[10] | 孙墨杰,林东尧,王钊,王世杰,王久生,王冬. 静电纺丝制备镍铁纳米纤维及其析氧性能[J]. 化工进展, 2019, 38(10): 4645-4650. |
[11] | 姚子琪,马东明,雷文龙,焦志伟,李好义,徐小东,张有忱. 熔体静电纺丝直写技术在组织工程中的应用进展[J]. 化工进展, 2019, 38(08): 3756-3762. |
[12] | 张帅, 王斯瑶, 姜召, 方涛. 静电纺丝技术在氨硼烷水解脱氢催化剂制备中的应用[J]. 化工进展, 2019, 38(07): 3194-3206. |
[13] | 林超, 朱锐钿, 黎丽娟, 宋春明, 邱志明, 严玉蓉. 聚乙二醇/氧化锑锡纳米复合纤维结构及保温透气性能[J]. 化工进展, 2019, 38(05): 2293-2298. |
[14] | 余韶阳,安瑛,李守猛,王循,钟强,雷文龙,丁玉梅,杨卫民,李好义. 高黏度聚乳酸(PLA)熔体微分离心静电纺丝[J]. 化工进展, 2019, 38(03): 1176-1181. |
[15] | 王循, 丁玉梅, 秦永新, 杨卫民, 李好义, 陈宏波. 熔体微分电纺PLA/ATBC纳米纤维膜吸油性能[J]. 化工进展, 2018, 37(11): 4390-4396. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 813
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 464
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |