1 |
杨兆晟, 张群力, 张文婧, 等. 中温相变蓄热系统强化传热方法研究进展[J]. 化工进展, 2019, 38(10): 4389-4402.
|
|
YANG Zhaosheng, ZHANG Qunli, ZHANG Wenjing, et al. Research progress on heat transfer enhancement methods for medium temperature latent heat thermal energy storage systems[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4389-4402.
|
2 |
ZHANG Chunwei, YU Meng, FAN Yubin, et al. Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe[J]. Energy, 2020, 195: 116809.
|
3 |
KABBARA Moe, GROULX Dominic, JOSEPH Alain. Experimental investigations of a latent heat energy storage unit using finned tubes[J]. Applied Thermal Engineering, 2016, 101: 601-611.
|
4 |
朱孟帅, 王子龙, 孙向昕, 等. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211.
|
|
ZHU Mengshuai, WANG Zilong, SUN Xiangxin, et al. Experimental research on the effect of the copper metal foam proportion on paraffin wax melting and heat transfer mechanism under high cell density[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3203-3211.
|
5 |
陈岩, 叶宇轩, 杜文静. 泡沫金属在熔盐相变蓄热中的强化传热特性[J]. 化工进展, 2020, 39(7): 2566-2573.
|
|
CHEN Yan, YE Yuxuan, DU Wenjing. Heat transfer enhancement performance in phase change process of molten salt using foam metal[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2566-2573.
|
6 |
袁维烨, 章学来, 华维三, 等. 膨胀石墨/三水乙酸钠复合相变材料储热的性能[J]. 化工进展, 2018, 37(11): 4405-4411.
|
|
YUAN Weiye, ZHANG Xuelai, HUA Weisan, et al. Thermal storage performance of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4405-4411.
|
7 |
ZHANG Chunwei, ZHANG Xuejun, QIU Limin, et al. Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm[J]. Energy, 2020, 211: 118578.
|
8 |
BEJAN Adrian. Convection heat transfer[M]. New York: John Wiley & Sons, 2013.
|
9 |
SHARIFI Nourouddin, ROBAK Christopher W, BERGMAN Theodore L, et al. Three-dimensional PCM melting in a vertical cylindrical enclosure including the effects of tilting[J]. International Journal of Heat and Mass Transfer, 2013, 65: 798-806.
|
10 |
BABY R, BALAJI C. Experimental investigations on thermal performance enhancement and effect of orientation on porous matrix filled PCM based heat sink[J]. International Communications in Heat and Mass Transfer, 2013, 46: 27-30.
|
11 |
GROULX Dominic, BIWOLE Pascal Henry. Solar PV passive temperature control using phase change materials[C]//Proceeding of the 15th International Heat Transfer Conference. August 10-15, 2014. Kyoto, Japan. Connecticat: Begellhouse, 2014.
|
12 |
KAMKARI Babak, SHOKOUHMAND Hossein, BRUNO Frank. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure[J]. International Journal of Heat and Mass Transfer, 2014, 72: 186-200.
|
13 |
SEDDEGH Saeid, WANG Xiaolin, HENDERSON Alan D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358.
|
14 |
PAHAMLI Y, HOSSEINI M J, RANIBAR A A, et al. Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 316-334.
|
15 |
SIYABI Idris AL, KHANNA Sourav, MALLICK Tapas, et al. An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system[J]. Journal of Energy Storage, 2019, 23: 57-68.
|
16 |
MEHTA Digant S, SOLANKI Karan, RATHOD Manish K, et al. Thermal performance of shell and tube latent heat storage unit: comparative assessment of horizontal and vertical orientation[J]. Journal of Energy Storage, 2019, 23: 344-362.
|
17 |
KALAPALA Lokesh, DEVANURI Jaya Krishna. Energy and exergy analyses of latent heat storage unit positioned at different orientations—An experimental study[J]. Energy, 2020, 194: 116924.
|
18 |
朱子钦. 面向储热的纳米复合相变材料熔化传热特性实验研究[D]. 杭州: 浙江大学, 2018.
|
|
ZHU Ziqin. An experimental study of melting heat transfer of nanocomposite phase change materials toward thermal energy storage[D]. Hangzhou: Zhejiang University, 2018.
|
19 |
ISMAIL K A R, ALVES C L F, MODESTO M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21(1): 53-77.
|
20 |
IAMAIL K A R, HENRIQUEZ J R, MOURA L F M, et al. Ice formation around isothermal radial finned tubes[J]. Energy Conversion and Management, 2000, 41(6): 585-605.
|
21 |
PAN Chunjian, VERMAAK Natasha, ROMERO Carlos, et al. Efficient optimization of a longitudinal finned heat pipe structure for a latent thermal energy storage system[J]. Energy Conversion and Management, 2017, 153: 93-105.
|
22 |
GAU C, VISKANTA R. Melting and solidification of a pure metal on a vertical wall[J]. Journal of Heat Transfer, 1986, 108(1):174-181.
|
23 |
LI Haiyan, LIU Jing. Revolutionizing heat transport enhancement with liquid metals: proposal of a new industry of water-free heat exchangers[J]. Frontiers in Energy, 2011, 5(1): 20-42.
|