化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4025-4034.DOI: 10.16085/j.issn.1000-6613.2021-2031
收稿日期:
2021-09-27
修回日期:
2021-11-22
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
陈光辉
作者简介:
范军领(1973—),女,副教授,研究方向为相分离技术与设备。E-mail:
FAN Junling1(), HE Hao1, ZHANG Pan1, CHEN Guanghui2,3(
)
Received:
2021-09-27
Revised:
2021-11-22
Online:
2022-08-25
Published:
2022-08-22
Contact:
CHEN Guanghui
摘要:
以α型旋风分离器为研究对象,基于欧拉-拉格朗日方法,采用雷诺应力模型(RSM)、颗粒离散相模型(DPM)、E/CRC磨损方程对分离器内流场与磨损特性进行数值模拟。通过分析速度矢量、切向速度、颗粒运动轨迹等参数的分布规律,研究了局部磨损对设备内流场及分离性能的影响。结果表明,α型旋风分离器入口正对壁面磨损最为严重,最大磨损率约为1.4×10-5kg/(m2·s)。磨损引起壁面几何结构的改变,导致气流方向发生偏转,不利于主流的稳定与固体颗粒的分离。随局部磨损的加剧,排气管下口短路流急剧增大,从而导致排气管下口以下区域流体流量减少,外涡切向速度降低;细颗粒的逃逸现象更加明显,粗颗粒运动轨迹趋于重合,更易形成高浓度灰环加剧壁面磨损。与未磨损时相比,局部磨损厚度50mm时,3μm粒径颗粒的分离效率由74.38%降低至54.97%,分割粒径d50由0.73μm增大至2.36μm;设备压降降低了约15.41%。
中图分类号:
范军领, 何昊, 张攀, 陈光辉. 局部磨损对α型旋风分离器内流场及分离性能的影响[J]. 化工进展, 2022, 41(8): 4025-4034.
FAN Junling, HE Hao, ZHANG Pan, CHEN Guanghui. Effect of local erosion on flow field and separation performance of α-type cyclone separator[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4025-4034.
δ/mm | 轴向位置/mm | 下行流量/m3·s-1 | 短路流/m3·s-1 |
---|---|---|---|
0 | -265 | 0.305 | 0.111 |
-240 | 0.194 | ||
15 | -265 | 0.305 | 0.122 |
-235 | 0.183 | ||
30 | -265 | 0.305 | 0.142 |
-225 | 0.163 | ||
50 | -265 | 0.305 | 0.171 |
-215 | 0.134 |
表1 不同磨损厚度下短路流区域及短路流量
δ/mm | 轴向位置/mm | 下行流量/m3·s-1 | 短路流/m3·s-1 |
---|---|---|---|
0 | -265 | 0.305 | 0.111 |
-240 | 0.194 | ||
15 | -265 | 0.305 | 0.122 |
-235 | 0.183 | ||
30 | -265 | 0.305 | 0.142 |
-225 | 0.163 | ||
50 | -265 | 0.305 | 0.171 |
-215 | 0.134 |
1 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
FU Pengbo, HUANG Yuan, WANG Jiangang, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
2 | 蒋明虎, 卢梦媚, 徐保蕊, 等. 旋流器磨损研究进展[J]. 化工进展, 2016, 35(S2): 41-45. |
JIANG Minghu, LU Mengmei, XU Baorui, et al. Recent progress of cyclone wear research[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 41-45. | |
3 | FULCHINI F, GHADIRI M, BORISSOVA A, et al. Development of a methodology for predicting particle attrition in a cyclone by CFD-DEM[J]. Powder Technology, 2019, 357: 21-32. |
4 | TOFIGHIAN H, AMANI E, SAFFAR-AVVAL M. A large eddy simulation study of cyclones: The effect of sub-models on efficiency and erosion prediction[J]. Powder Technology, 2020, 360: 1237-1252. |
5 | 金有海, 于长录, 赵新学. 旋风分离器环形空间壁面磨损的数值研究[J]. 高校化学工程学报, 2012, 26(2): 196-202. |
JIN Youhai, YU Changlu, ZHAO Xinxue. Numerical study on wall erosion of the annular space in cyclone separators[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(2): 196-202. | |
6 | 王江云, 冯留海, 张果, 等. 单入口双进气道旋风分离器内冲蚀特性[J]. 石油学报(石油加工), 2016, 32(2): 289-296. |
WANG Jiangyun, FENG Liuhai, ZHANG Guo, et al. Erosion characteristic in a single inlet cyclone separator with double passage[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(2): 289-296. | |
7 | 李琴, 邹康, 刘海东, 等. 入口高宽比对旋风分离器壁面冲蚀的影响[J]. 流体机械, 2017, 45(7): 52-57, 11. |
LI Qin, ZOU Kang, LIU Haidong, et al. Effect of inlet aspect ratio on the wall erosion in the cyclone separator[J]. Fluid Machinery, 2017, 45(07): 52-57, 11. | |
8 | 袁惠新, 殷伟伟, 黄津, 等. 固液分离旋流器壁面磨损的数值模拟[J]. 化工进展, 2015, 34(3): 664-670. |
YUAN Huixin, YIN Weiwei, HUANG Jin, et al. Numerical simulation of the wall attrition in solid-liquid hydrocyclones[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 664-670. | |
9 | 袁惠新, 吕浪, 殷伟伟, 等. 不同入口形式的固液分离旋流器壁面磨损研究[J]. 化工进展, 2015, 34(10): 3583-3588. |
YUAN Huixin, Lang LYU, YIN Weiwei, et al. Numerical simulation of the wall attrition in solid-liquid separation cyclone with different inlet forms[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3583-3588. | |
10 | 赵新学, 金有海. 排尘口直径对旋风分离器壁面磨损影响的数值模拟[J]. 机械工程学报, 2012, 48(6): 142-148. |
ZHAO Xinxue, JIN Youhai. Effect of dust discharge diameter on wall erosion in cyclone separator[J]. Journal of Mechanical Engineering, 2012, 48(6): 142-148. | |
11 | CI H, SUN G G. Effects of wall roughness on the flow field and Vortex length of cyclone[J]. Procedia Engineering, 2015, 102: 1316-1325. |
12 | FOROOZESH J, PARVAZ F, HOSSEINI S H, et al. Computational fluid dynamics study of the impact of surface roughness on cyclone performance and erosion[J]. Powder Technology, 2021, 389: 339-354. |
13 | DUAN J H, GAO S, LU Y C, et al. Study and optimization of flow field in a novel cyclone separator with inner cylinder[J]. Advanced Powder Technology, 2020, 31(10): 4166-4179. |
14 | WEI J P, ZHANG H T, WANG Y G, et al. The gas-solid flow characteristics of cyclones[J]. Powder Technology, 2017, 308:178-192. |
15 | 王薇, 焦清介. 旋风除尘器灰环磨损与锥体角度关系的研究[J]. 安全与环境学报, 2004, 4(3): 11-14. |
WANG Wei, JIAO Qingjie. Study on relation between conic angle and ash ring abrasion in cyclonic dust remover[J]. Journal of Safety and Environment, 2004, 4(3): 11-14. | |
16 | 李琴, 邹康, 刘海东, 等. 基于颗粒受力的旋风分离器冲蚀机理的研究[J]. 流体机械, 2017, 45(3): 42-47. |
LI Qin, ZOU Kang, LIU Haidong, et al. The erosion mechanism research of cyclone based on force operating of particles[J]. Fluid Machinery, 2017, 45(3): 42-47. | |
17 | 高助威, 王娟, 王江云, 等. 基于DPM模型的旋风分离器内颗粒浓度场模拟分析[J]. 石油学报(石油加工), 2018, 34(3): 507-514. |
GAO Zhuwei, WANG Juan, WANG Jiangyun, et al. Simulation analysis of particle concentration of cyclone separator using the DPM model[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2018, 34(3): 507-514. | |
18 | 礼晓宇, 何兴建, 宋健斐, 等. 旋风分离器内颗粒藏量的实验测量[J]. 中国粉体技术, 2014, 20(3): 7-10. |
LI Xiaoyu, HE Xingjian, SONG Jianfei, et al. Experimental study on particle reserves in cyclone separator[J]. China Powder Science and Technology, 2014, 20(3): 7-10. | |
19 | 孔文文, 严超宇, 魏耀东. 旋风分离器料腿漏风对压降影响的实验分析[J]. 化工装备技术, 2016, 37(4): 1-4. |
KONG Wenwen, YAN Chaoyu, WEI Yaodong. Experimental analysis of dipleg gas leakage effect on pressure drop of cyclone separator[J]. Chemical Equipment Technology, 2016, 37(4): 1-4. | |
20 | 魏耀东, 刘仁桓, 燕辉, 等. 蜗壳式旋风分离器的磨损实验和分析[J]. 化工机械, 2001, 28(2): 71-75. |
WEI Yaodong, LIU Renhuan, YAN Hui, et al. Experiments and analyses of the erosion of volute cyclone separators[J]. Chemical Engineering & Machnery, 2001, 28(2): 71-75. | |
21 | WANG S, LUO K, HU C S, et al. Particle-scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6774-6789. |
22 | CHU K W, KUANG S B, YU A B, et al. Prediction of wear and its effect on the multiphase flow and separation performance of dense medium cyclone[J]. Minerals Engineering, 2014, 56: 91-101. |
23 | SEDREZ T A, DECKER R K, SILVA M K DA, et al. Experiments and CFD-based erosion modeling for gas-solids flow in cyclones[J]. Powder Technology, 2017, 311: 120-131. |
24 | 邹康, 艾志久, 胡坤, 等. 基于防磨结构的旋风分离器性能优化[J]. 过程工程学报, 2015, 15(1): 9-15. |
ZOU Kang, AI Zhijiu, HU Kun, et al. Performance optimization of cyclone separator based on the wear structure[J]. The Chinese Journal of Process Engineering, 2015, 15(1): 9-15. | |
25 | 谭慧敏, 王建军, 马艳杰, 等. 排尘锥结构对旋风分离器内气固两相分离性能影响的研究[J]. 高校化学工程学报, 2011, 25(4): 590-596. |
TAN Huimin, WANG Jianjun, MA Yanjie, et al. Analysis of the influence of dust discharge cone geometry on the gas-solid flow field in tangential inlet cyclone separator[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(4): 590-596. | |
26 | 秦明坤. 1种侧壁开缝式防磨损旋风分离器性能模拟[J]. 化工生产与技术, 2014, 21(5): 12-16, 7. |
QIN Mingkun. The simulation of the performance of wear-proof cyclone separator with slit in the side wall[J]. Chemical Production and Technology, 2014, 21(5): 12-16, 7. | |
27 | MAZYAN W I, AHMADI A, BRINKERHOFF J, et al. Enhancement of cyclone solid particle separation performance based on geometrical modification: Numerical analysis[J]. Separation and Purification Technology, 2018, 191: 276-285. |
28 | PARVAZ F, HOSSEINI S H, ELSAYED K, et al. Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators[J]. Separation and Purification Technology, 2018, 201: 223-237. |
29 | 周大伟, 向晓东. 环缝内衬固液分离耐磨旋流器磨损的数值模拟[J]. 化工进展, 2016, 35(2): 397-402. |
ZHOU Dawei, XIANG Xiaodong. Numerical simulation of the attrition in solid-liquid wear-resisting cyclones with the ring seam liner[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 397-402. | |
30 | 卢梦媚, 蒋明虎, 赵立新, 等. 内嵌小锥结构固液分离旋流器磨蚀的数值模拟[J]. 流体机械, 2017, 45(12): 13-17. |
LU Mengmei, JIANG Minghu, ZHAO Lixin, et al. Numerical simulation of the erosion in embed cone structure of solid-liquid separation hydrocyclone[J].Fluid Machinery, 2017, 45(12): 13-17. | |
31 | 王伟文, 袁红燕, 陈光辉, 等. α型旋流分离器: CN101116844A[P]. 2008-02-06. |
WANG Weiwen, YUAN Hongyan, CHEN Guanghui, et al. α-type cyclone separator: CN101116844A[P]. 2008-02-06. | |
32 | PARSI M, NAJMI K, NAJAFIFARD F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 850-873. |
33 | SLACK M D, PRASAD R O, BAKKER A, et al. Advances in cyclone modelling using unstructured grids[J]. Chemical Engineering Research and Design, 2000, 78(8): 1098-1104. |
34 | VIEIRA R E, MANSOURI A, MCLAURY B S, et al. Experimental and computational study of erosion in elbows due to sand particles in air flow[J]. Powder Technology, 2016, 288: 339-353. |
35 | ZHOU L X. Two-fluid turbulence modeling of swirling gas-particle flows—A review[J]. Powder Technology, 2017, 314: 253-263. |
36 | SHUKLA S K, SHUKLA P, GHOSH P. Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators.[J] Advanced Powder Technology, 2011, 22(2): 209-219. |
37 | MISIULIA, D, ANDERSSON A G, LUNDSTRÖM T S. Computational investigation of an industrial cyclone separator with helical-roof inlet[J]. Chemical Engineering & Technology, 2015, 38(8):1425-1434. |
38 | 付烜, 孙国刚, 刘佳, 等. 旋风分离器短路流的估算问题及其数值计算方法的讨论[J]. 化工学报, 2011, 62(9): 2535-2540. |
FU Xuan, SUN Guogang, LIU Jia, et al. Discuss on estimation difficulties and numerical computation methods for short circuit flow in cyclone separators[J]. CIESC Journal, 2011, 62(9): 2535-2540. | |
39 | MISIULIA, D, ANDERSSON A G, LUNDSTRÖM T S. Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet[J]. Powder Technology, 2017, 305: 48-55. |
40 | SONG C M, PEI B B, JIANG M T, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294: 437-448. |
[1] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[2] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[3] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[4] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[5] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[12] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[13] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[14] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[15] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |