化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3974-3982.DOI: 10.16085/j.issn.1000-6613.2021-1842
收稿日期:
2021-08-27
修回日期:
2021-12-13
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
曹冬冬
基金资助:
CAO Dongdong1,2(), LI Xingchun1, XUE Ming1
Received:
2021-08-27
Revised:
2021-12-13
Online:
2022-07-25
Published:
2022-07-23
Contact:
CAO Dongdong
摘要:
中间储罐是石化企业的主要挥发性有机物(VOCs)排放源,对大气环境产生重要影响。本文对我国某石化企业炼化中间产物、污油、石化中间产物等中间储罐大呼吸过程进行了采样监测,分析了VOCs排放特征并建立了有机污染物图谱。基于OH自由基损失速率和最大增量反应活性法,分别量化了大呼吸过程大气反应活性和臭氧生成潜势(OFP)。结果表明,中间储罐大呼吸过程VOCs浓度高达数万毫克每立方米,单位体积物料周转量VOCs排放强度达到0.55~71.3g/m3。不同储罐排放特征差异大,炼化中间产物及污油储罐VOCs组成以烷烃为主,石化中间产物储罐VOCs以烯烃和芳香烃为主;C3~C7烷烃、C3~C4烯烃、苯、甲苯和丙酮等是首要污染物。中间储罐大呼吸损耗气具有较高大气光化学反应活性和臭氧生成潜势(OFP),OH自由基损失速率常数接近1.43×104~2.37×106s-1,OFP达到2.84×105~7.53×107mg/m3,焦化污油反应活性与OFP较低,乙烯裂解重油储罐较高。大呼吸过程反应活性及臭氧生成潜势主要源于烷烃和烯烃组分,甲基戊烷、正己烷和甲基环己烷等C6~C7烷烃、C3~C5烯烃和二甲苯等是需要优先控制高活性物质。
中图分类号:
曹冬冬, 李兴春, 薛明. 石化中间储罐挥发性有机物排放特征与反应活性[J]. 化工进展, 2022, 41(7): 3974-3982.
CAO Dongdong, LI Xingchun, XUE Ming. Emission characteristics and photochemical reactivity of volatile organic compounds from petrochemical intermediate storage tanks[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3974-3982.
序号 | 中间储罐 | 所属单元区 | 采样位置及排放环节 |
---|---|---|---|
1 | 催化蜡油 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
2 | 催化油浆 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
3 | 管线吹扫污油 | 炼炼油厂油品车间 | 呼吸阀,大呼吸过程 |
4 | 炼油污油 | 炼油厂常减压车间 | 呼吸阀,大呼吸过程 |
5 | 焦化原料 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
6 | 焦化污油 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
7 | 乙烯裂解重油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
8 | 乙烯裂解调和油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
9 | 炼油污水污油 | 炼油污水厂 | 呼吸阀,大呼吸过程 |
表1 中间储罐采样点清单
序号 | 中间储罐 | 所属单元区 | 采样位置及排放环节 |
---|---|---|---|
1 | 催化蜡油 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
2 | 催化油浆 | 炼油厂油品车间 | 呼吸阀,大呼吸过程 |
3 | 管线吹扫污油 | 炼炼油厂油品车间 | 呼吸阀,大呼吸过程 |
4 | 炼油污油 | 炼油厂常减压车间 | 呼吸阀,大呼吸过程 |
5 | 焦化原料 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
6 | 焦化污油 | 炼油厂焦化车间 | 呼吸阀,大呼吸过程 |
7 | 乙烯裂解重油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
8 | 乙烯裂解调和油 | 乙烯厂 | 呼吸阀,大呼吸过程 |
9 | 炼油污水污油 | 炼油污水厂 | 呼吸阀,大呼吸过程 |
烷烃 | 烯烃 | 芳香烃 | 含氧物质 | |
---|---|---|---|---|
乙烷 | 2,3-二甲基丁烷 | 乙烯 | 苯 | 丙烯醛 |
丙烷 | 2-甲基戊烷 | 丙烯 | 甲苯 | 丙酮 |
异丁烷 | 3-甲基戊烷 | 反-2-丁烯 | 乙苯 | MTBE |
正丁烷 | 2,4-二甲基戊烷 | 1-丁烯 | 间/对-二甲苯 | 乙酸乙酯 |
异戊烷 | 甲基环戊烷 | 顺-2-丁烯 | 邻-二甲苯 | 乙酸乙烯酯 |
正戊烷 | 2-甲基己烷 | 1,3-丁二烯 | 苯乙烯 | 异丙醇 |
正己烷 | 2,3-二甲基戊烷 | 1-戊烯 | 异丙苯 | THF |
正庚烷 | 3-甲基己烷 | 反-2-戊烯 | 正丙苯 | 己酮 |
正辛烷 | 2,2,4-三甲基戊烷 | 异戊二烯 | 1,3,5-三甲基苯 | |
正壬烷 | 甲基环己烷 | 顺-2-戊烯 | 1,2,4-三甲基苯 | |
正葵烷 | 2,3,4-三甲基戊烷 | 1-己烯 | 1,2,3-三甲基苯 | |
十一烷 | 2-甲基庚烷 | 1,4-二乙基苯 | ||
环戊烷 | 3-甲基庚烷 | 2-乙基甲苯 | ||
环己烷 | 十二烷 | 3-乙基甲苯 | ||
2,2-二甲基丁烷 | 4-乙基甲苯 |
表2 主要VOCs组分
烷烃 | 烯烃 | 芳香烃 | 含氧物质 | |
---|---|---|---|---|
乙烷 | 2,3-二甲基丁烷 | 乙烯 | 苯 | 丙烯醛 |
丙烷 | 2-甲基戊烷 | 丙烯 | 甲苯 | 丙酮 |
异丁烷 | 3-甲基戊烷 | 反-2-丁烯 | 乙苯 | MTBE |
正丁烷 | 2,4-二甲基戊烷 | 1-丁烯 | 间/对-二甲苯 | 乙酸乙酯 |
异戊烷 | 甲基环戊烷 | 顺-2-丁烯 | 邻-二甲苯 | 乙酸乙烯酯 |
正戊烷 | 2-甲基己烷 | 1,3-丁二烯 | 苯乙烯 | 异丙醇 |
正己烷 | 2,3-二甲基戊烷 | 1-戊烯 | 异丙苯 | THF |
正庚烷 | 3-甲基己烷 | 反-2-戊烯 | 正丙苯 | 己酮 |
正辛烷 | 2,2,4-三甲基戊烷 | 异戊二烯 | 1,3,5-三甲基苯 | |
正壬烷 | 甲基环己烷 | 顺-2-戊烯 | 1,2,4-三甲基苯 | |
正葵烷 | 2,3,4-三甲基戊烷 | 1-己烯 | 1,2,3-三甲基苯 | |
十一烷 | 2-甲基庚烷 | 1,4-二乙基苯 | ||
环戊烷 | 3-甲基庚烷 | 2-乙基甲苯 | ||
环己烷 | 十二烷 | 3-乙基甲苯 | ||
2,2-二甲基丁烷 | 4-乙基甲苯 |
采样点 | 浓度/mg·m-3 | 相对质量分数/% | |||
---|---|---|---|---|---|
CH4 | VOCs | CH4 | VOCs | ||
催化蜡油罐 | 85.6 | 890.4 | 8.8 | 91.2 | |
催化油浆罐 | 19.3 | 499.7 | 3.7 | 96.3 | |
炼油厂污油罐 | 1020 | 2190 | 31.8 | 68.2 | |
焦化原料罐 | 10800 | 33100 | 24.6 | 75.4 | |
焦化污油罐 | 507 | 64793 | 0.8 | 99.2 | |
裂解重油罐 | 49.9 | 11050.1 | 0.4 | 99.6 | |
裂解调和罐 | 3.9 | 1486.1 | 0.3 | 99.7 | |
炼油污水污油罐 | 20900 | 48000 | 30.3 | 69.7 |
表3 储罐大呼吸过程有机物浓度与相对含量
采样点 | 浓度/mg·m-3 | 相对质量分数/% | |||
---|---|---|---|---|---|
CH4 | VOCs | CH4 | VOCs | ||
催化蜡油罐 | 85.6 | 890.4 | 8.8 | 91.2 | |
催化油浆罐 | 19.3 | 499.7 | 3.7 | 96.3 | |
炼油厂污油罐 | 1020 | 2190 | 31.8 | 68.2 | |
焦化原料罐 | 10800 | 33100 | 24.6 | 75.4 | |
焦化污油罐 | 507 | 64793 | 0.8 | 99.2 | |
裂解重油罐 | 49.9 | 11050.1 | 0.4 | 99.6 | |
裂解调和罐 | 3.9 | 1486.1 | 0.3 | 99.7 | |
炼油污水污油罐 | 20900 | 48000 | 30.3 | 69.7 |
催化蜡油罐 | 催化油浆罐 | 焦化原料罐 | 焦化污油罐 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正己烷 | 12.1 | 正己烷 | 8.6 | 3-甲基戊烷 | 28.6 | 丙酮 | 15.2 | |||
甲基环己烷 | 9.1 | 丙烯 | 8.6 | 丙烷 | 13.9 | 甲基环己烷 | 7.9 | |||
正戊烷 | 6.9 | 异戊烷 | 8.5 | 丙烯 | 7.6 | 正庚烷 | 7.7 | |||
正庚烷 | 5.9 | 正戊烷 | 7.8 | 异戊烷 | 6.5 | 环己烷 | 6.4 | |||
异戊烷 | 5.8 | 甲基环己烷 | 6.6 | 丙酮 | 6.3 | 正戊烷 | 6 | |||
乙烯裂解罐 | 乙烯调和罐 | 炼油污油罐 | 炼油污水污油罐 | |||||||
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正戊烷 | 12.1 | 丙酮 | 14.2 | 丁烷 | 25.9 | 正己烷 | 11.2 | |||
苯 | 11.3 | 丙烯 | 13.5 | 丙烷 | 22.3 | 正戊烷 | 9.0 | |||
丙酮 | 11.2 | 正己烷 | 12.0 | 正戊烷 | 11.4 | 乙酸乙烯酯 | 6.9 | |||
1-丁烯 | 10.3 | 1-丁烯 | 11.7 | 1-丁烯 | 11.1 | 甲基环己烷 | 6.6 | |||
甲苯 | 7.4 | 丁二烯 | 5.6 | 正己烷 | 3.5 | 异戊烷 | 5.7 |
表4 中间储罐VOCs含量前五位组分
催化蜡油罐 | 催化油浆罐 | 焦化原料罐 | 焦化污油罐 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正己烷 | 12.1 | 正己烷 | 8.6 | 3-甲基戊烷 | 28.6 | 丙酮 | 15.2 | |||
甲基环己烷 | 9.1 | 丙烯 | 8.6 | 丙烷 | 13.9 | 甲基环己烷 | 7.9 | |||
正戊烷 | 6.9 | 异戊烷 | 8.5 | 丙烯 | 7.6 | 正庚烷 | 7.7 | |||
正庚烷 | 5.9 | 正戊烷 | 7.8 | 异戊烷 | 6.5 | 环己烷 | 6.4 | |||
异戊烷 | 5.8 | 甲基环己烷 | 6.6 | 丙酮 | 6.3 | 正戊烷 | 6 | |||
乙烯裂解罐 | 乙烯调和罐 | 炼油污油罐 | 炼油污水污油罐 | |||||||
物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | 物质 | 占比/% | |||
正戊烷 | 12.1 | 丙酮 | 14.2 | 丁烷 | 25.9 | 正己烷 | 11.2 | |||
苯 | 11.3 | 丙烯 | 13.5 | 丙烷 | 22.3 | 正戊烷 | 9.0 | |||
丙酮 | 11.2 | 正己烷 | 12.0 | 正戊烷 | 11.4 | 乙酸乙烯酯 | 6.9 | |||
1-丁烯 | 10.3 | 1-丁烯 | 11.7 | 1-丁烯 | 11.1 | 甲基环己烷 | 6.6 | |||
甲苯 | 7.4 | 丁二烯 | 5.6 | 正己烷 | 3.5 | 异戊烷 | 5.7 |
1 | 中华人民共和国生态环境部. 2019中国生态环境状况公报[R]. 北京: 生态环境部, 2020.Ministry of Ecology and Environment of the People’s Republic of China. 2019 Bulletin on the state of ecology and environment in China[R]. Beijing: MEE, 2020. |
2 | ATKINSON R. Atmospheric chemistry of VOCs and NO x [J]. Atmospheric Environment, 2000, 34(12/13/14): 2063-2101. |
3 | ZIEMANN P J, ATKINSON R. Kinetics, products, and mechanisms of secondary organic aerosol formation[J]. Chemical Society Reviews, 2012, 41(19): 6582-6605. |
4 | 余益军, 孟晓艳, 王振, 等. 京津冀地区城市臭氧污染趋势及原因探讨[J]. 环境科学, 2020, 41(1): 106-114. |
YU Yijun, MENG Xiaoyan, WANG Zhen, et al Driving factors of the significant increase in surface ozone in the Beijing-Tianjin-Hebei region, China, during 2013—2018[J]. Environmental Science, 2020, 41(1): 106-114. | |
5 | 王杨君, 李莉, 冯加良, 等. 基于OSAT方法对上海2010年夏季臭氧源解析的数值模拟研究[J]. 环境科学学报, 2014, 34(3): 567-573. |
WANG Yangjun, LI Li, FENG Jialiang, et al. Source apportionment of ozone in the summer of 2010 in Shanghai using OSAT method[J]. Acta Sciencae Circumstantiae, 2014, 34(3): 567-573. | |
6 | WANG Tao, XUE Likun, BRIMBLECOMBE P, et al. Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 2017, 575: 1582-1596. |
7 | WANG Mengya, YIM S H L, WONG D C, et al. Source contributions of surface ozone in China using an adjoint sensitivity analysis[J]. Science of the Total Environment,2019, 662: 385-392. |
8 | LI Lingyu, XIE Shaodong, ZENG Limin, et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 2015, 113: 247-254. |
9 | 潘本锋, 程麟钧, 王建国, 等. 京津冀地区臭氧污染特征与来源分析[J]. 中国环境监测, 2016, 32(5): 17-23. |
PAN Benfeng, CHEN Linjun, WANG Jianguo, et al. Characteristics and source attribution of ozone pollution in Beijing-Tianjin-Hebei region[J]. Environmental Monitoring in China, 2016, 32(5): 17-23. | |
10 | CHEN Shenpo, WANG Chiheng, LIN Wendian, et al. Air quality impacted by local pollution sources and beyond-using a prominent petro-industrial complex as a study case[J]. Environmental Pollution, 2018, 236: 699-705. |
11 | CETIN E, ODABASI M, SEYFIOGLU R. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery[J]. Science of the Total Environment, 2003, 312(1/2/3): 103-112. |
12 | 吴亚君, 胡君, 张鹤丰, 等. 兰州市典型企业VOCs排放特征及反应活性分析[J]. 环境科学研究, 2019, 32(5): 802-812. |
WU Yajun, HU Jun, ZHANG Hefeng, et al. Characteristics and chemical reactivity of fugitive volatile organic compounds from typical industries in Lanzhou city[J]. Research of Environmental Sciences, 2019, 32(5): 802-812. | |
13 | 刘锦, 王秀艳, 杨文, 等. 天津临港石化企业VOCs排放特征及环境影响[J]. 环境科学研究, 2018, 31(2): 215-220. |
LIU Jin, WANG Xiuyan, YANG Wen, et al. Emission characteristics and environmental impact of VOCs in Tianjin Lingang petrochemical enterprises[J]. Research of Environmental Sciences, 2018, 31(2): 215-220. | |
14 | 李凌波, 李龙, 程梦婷, 等. 石化企业挥化性有机物无组织排放监测技术进展[J]. 化工进展, 2020, 39(3): 1196-1208. |
LI Lingbo, LI Long, CHENG Mengting, et al. Current status and future developments in monitoring of fugitive VOC emissions from petroleum refining and petrochemical Industry[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1196-1208. | |
15 | WEI Wei, CHENG Shuiyuan, LI Guohao, et al. Characteristics of ozone and ozone precursors (VOCs and NO x ) around a petroleum refinery in Beijing, China[J]. Journal of Environmental Sciences, 2014, 26(2): 332-342. |
16 | SONG Yu, DAI Wei, SHAO Min, et al. Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China[J]. Environment Pollution, 2008, 156(1): 174-183. |
17 | HUANG C, CHEN C H, LI L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4105-4120. |
18 | WU Rongrong, BO Yu, LI Jing, et al. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008—2012[J]. Atmospheric Environment, 2016, 127:244-254. |
19 | 李凌波, 刘忠生, 方向晨. 炼油厂VOC排放控制策略——储运、废水处理、工艺尾气、冷却塔及火炬[J]. 当代石油石化, 2013, 21(10): 4-12. |
LI Lingbo, LIU Zhongsheng, FANG Xiangchen.The strategies for refinery VOC emission control—Storage tanks and transfer operations, wastewater treatment, process vents, cooling towers and flares[J]. Petroleum & Petrochemical Today, 2013, 21(10): 4-12. | |
20 | WEI Wei, CHENG Shuiyuan, LI Guohao, et al. Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China[J]. Atmospheric Environment, 2014, 89: 358-366. |
21 | MO Ziwei, SHAO Min, LU Sihua, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China[J]. Science of the Total Environment, 2015, 533: 422-431 |
22 | CHEN C L, SHU Chimin, FANG H Y. Location and characterization of VOC emissions at a petrochemical plant in Taiwan[J]. Environmental Forensics, 2006, 7(2): 159-167. |
23 | 吴丽萍, 欧盛菊, 殷宝辉, 等. 新疆维吾尔自治区石化企业典型工艺无组织VOCs排放特征及光化学反应活性[J]. 环境科学研究, 2018, 31(12): 2103-2111. |
WU Liping, Shengju OU, YIN Baohui, et al. Emission characteristics and photochemical reaction activity of VOCs in the non-organized emission of typical processes of the petrochemical enterprise in Xinjiang Uygur Autonmous Region[J]. Research of Environmental Sciences, 2018, 31(12): 2103-2111. | |
24 | 李勤勤, 张志娟, 李杨, 等. 石油炼化无组织VOCs的排放特征及臭氧生成潜力分析[J]. 中国环境科学, 2016, 36(5): 1323-1331. |
LI Qinqin, ZHANG Zhijuan, LI Yang, et al. Characteristics and ozone formation potential of fugitive volatile organic compounds (VOCs) emitted from petrochemical industry in Pearl River Delta[J]. China Environmental Science, 2016, 36(5): 1323-1331. | |
25 | LIU Ying, SHAO Min, FU Linlin, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I.[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. |
26 | ZHANG Zhijuan, WANG Hao, CHEN Dan, et al. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China[J]. Science of the Total Environment, 2017, 584/585: 1162-1174. |
27 | 吕小利, 刘佳佳, 陈劲. 炼化企业VOCs排放现状及治理对策[J]. 安全、健康和环境, 2017, 17(1): 29-32. |
Xiaoli LYU, LIU Jiajia, CHEN Jin. Emission status and countermeasures of VOCs in refining & chemical industries[J]. Safety Health & Environment, 2017, 17(1): 29-32. | |
28 | 郭兵兵, 朴勇, 华秀凤, 等. 高温蜡油罐区废气综合治理技术[J]. 当代化工, 2014, 43(9): 1879-1882. |
GUO Bingbing, PIAO Yong, HUA Xiufeng, et al. Comprehensive treatment technology for odour pollution of waste gas in high temperature gas oil tank farm[J]. Contemporary Chemical Industry, 2014, 43(9): 1879-1882. | |
29 | 李凌波, 郭兵兵, 刘忠生. 炼油厂恶臭污染源综合监测与评价Ⅱ. 污染源分级与排放评估[J]. 石油炼制与化工, 2013, 44(2): 77-83. |
LI Lingbo, GUO Bingbing, LIU Zhongsheng. Comprehensive monitoring and assessment of odour emission sources from refinery Ⅱ. Classification of odorous sources and emission assessment[J]. Petroleum Processing and Petrochemicals, 2013, 44(2): 77-83. | |
30 | 方向晨, 刘忠生, 郭兵兵, 等. 炼厂酸性水罐区气体减排和治理新技术[J]. 炼油技术与工程, 2012, 42(3): 58-62. |
FANG Xiangchen, LIU Zhongsheng, GUO Bingbing, et al. New technologies for integrated treatment of vent gas from sour water tank farm in refinery[J]. Petroleum Refinery Engineering, 2012, 42(3): 58-62. | |
31 | 中华人民共和国生态环境部. 中华人民共和国环保行业标准: 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法: [S]. 北京: 中国环境科学出版社, 2017. |
Ministry of Ecology and Environment of the People’s Republic of China. Environmental protection standard of the People’s Republic of China: Ambient air-determination of total hydrocarbons, methane and non-methane hydrocarbons-direct injection/gas chromatography: [S]. Beijing: China Environmental Science Press, 2017 | |
32 | US EPA. 1999. Compendium method TO-15 determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by GC/MS[R/OL]. . |
33 | ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. |
34 | CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste, 1994, 44(7): 881-899. |
35 | FENG Yunxia, XIAO Anshan, JIA Runzhong, et al. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery[J]. Environmental Pollution, 2020, 265: 115026. |
[1] | 郑亚梅, 林胜男, 荆国华, 申华臻, 吕碧洪. 基于FAHP的农药生产VOCs末端治理技术评价[J]. 化工进展, 2022, 41(6): 3372-3380. |
[2] | 张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437. |
[3] | 杨宇轩, 朱晨曦, 黄群星. 废弃物衍生分级多孔炭的制备及吸附应用进展[J]. 化工进展, 2021, 40(1): 427-439. |
[4] | 李孟, 李炜, 张帅, 李雨薇, 刘芳, 赵朝成, 王永强. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. |
[5] | 冷星月, 胡彩虹, 王炜月, 李丹丹, 陈建, 罗孟飞. 低浓度挥发性有机物吸附浓缩材料的研究进展[J]. 化工进展, 2020, 39(S2): 336-345. |
[6] | 王炜月, 赵培培, 金凌云, 岑丙横, 陈建, 罗孟飞. 挥发性有机物燃烧催化剂的研究进展[J]. 化工进展, 2020, 39(S2): 185-195. |
[7] | 赵亚飞, 叶凯, 庄烨, 郑进保. 锰基催化剂协同等离子降解VOCs研究进展[J]. 化工进展, 2020, 39(S2): 175-184. |
[8] | 闵健, 腾东玉, 王云, 陈达. 密封点挥发性有机物(VOCs)排放速率的数值模拟及实测应用[J]. 化工进展, 2020, 39(7): 2599-2605. |
[9] | 李石, 邢亚彬, 孙慧, 杜改平, 戴安国, 赵东风. 污泥基活性炭制备改性及其吸附甲苯性能[J]. 化工进展, 2020, 39(6): 2463-2471. |
[10] | 李超. 介质阻挡放电技术处理挥发性有机物的研究进展[J]. 化工进展, 2020, 39(5): 1964-1973. |
[11] | 李凌波,李龙,程梦婷,方向晨. 石化企业挥发性有机物无组织排放监测技术进展[J]. 化工进展, 2020, 39(3): 1196-1208. |
[12] | 韩丰磊, 李梦雨, 刘杰夫, 李丹丹, 郭雯雯, 周硕, 赵朝成, 赵东风. 基于BP神经网络的煤直接液化装置VOCs包袋法检测与预测建模[J]. 化工进展, 2020, 39(10): 3949-3955. |
[13] | 赵春林, 马子然, 王宝冬, 李歌, 王红妍, 周佳丽, 路光杰, 肖雨亭, 杨建辉, 陆金丰. 固定源废气处理的催化剂涂覆工艺研究进展[J]. 化工进展, 2020, 39(10): 4015-4023. |
[14] | 陈鹏,陶雷,谢怡冰,郭梦雪,马懿星,王学谦,宁平,王郎郎. 低温等离子体协同催化降解挥发性有机物的研究进展[J]. 化工进展, 2019, 38(9): 4284-4294. |
[15] | 安亚雄,付强,刘冰,汪亚燕,江南,邢瑞,张东辉,唐忠利. 不同孔径活性炭吸附挥发性有机物的分子模拟[J]. 化工进展, 2019, 38(11): 5136-5141. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 332
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |