化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3360-3371.DOI: 10.16085/j.issn.1000-6613.2021-1535
蔡思超1,2(), 周静1,2, 杜金泽1,2, 李方舟3, 李源森1,2, 何林1,2,3(), 李鑫钢1,2,3, 王成扬1,2
收稿日期:
2021-07-20
修回日期:
2021-10-02
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
何林
作者简介:
蔡思超(1998—),男,硕士研究生,研究方向为有机固废资源化与无害化转化。E-mail:基金资助:
CAI Sichao1,2(), ZHOU Jing1,2, DU Jinze1,2, LI Fangzhou3, LI Yuansen1,2, HE Lin1,2,3(), LI Xingang1,2,3, WANG Chengyang1,2
Received:
2021-07-20
Revised:
2021-10-02
Online:
2022-06-10
Published:
2022-06-21
Contact:
HE Lin
摘要:
针对酚基精馏釜残组成复杂、毒性大且资源利用率不高的问题,根据其组分特征,本文初步提出减压深拔-热化学转化的多效资源化利用方案,并对该方案中不同产品的制备工艺进行了初步实验验证。结果表明,通过减压深拔得到的轻组分主要以苯二酚类化合物为主,且酚类物质占比70.38%(质量分数)。将深拔轻组分作为苯酚添加物与甲醛进行缩合反应,制备的镁碳砖耐火材料专用树脂,性能指标可满足企业标准,并基本达到行业水平。利用此釜残基树脂制备的镁碳砖,其性能与商用树脂Nv制备的镁碳砖性能无明显差异。深拔剩余的重组分通过化学改性,增加交联程度后可以基本达到颗粒活性炭黏结剂的指标要求。同时从成本效益上对釜残资源化利用方案进行了对比评价。本研究为酚基精馏釜残的处理提供了资源化利用可选途径。
中图分类号:
蔡思超, 周静, 杜金泽, 李方舟, 李源森, 何林, 李鑫钢, 王成扬. 煤化工酚基精馏釜残资源化利用过程初步分析[J]. 化工进展, 2022, 41(6): 3360-3371.
CAI Sichao, ZHOU Jing, DU Jinze, LI Fangzhou, LI Yuansen, HE Lin, LI Xingang, WANG Chengyang. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371.
精馏釜残成分 | 河南 | 新疆 | 云南 | |||
---|---|---|---|---|---|---|
0~255℃ | 255~450℃ | 0~250℃ | 250~450℃ | 0~270℃ | 270~550℃ | |
苯酚 | 0.85 | 4.04 | 2.80 | 0.71 | 13.96 | 0.96 |
单取代基苯酚 | 3.27 | 6.06 | 4.01 | 3.29 | 27.16 | 8.10 |
多取代基苯酚 | 6.76 | 3.85 | 5.83 | 6.80 | 14.93 | 4.57 |
苯二酚 | 12.80 | 4.36 | 14.18 | 10.10 | 0.88 | 1.78 |
单取代基苯二酚 | 32.26 | 21.08 | 39.67 | 37.48 | 7.85 | 15.28 |
多取代基苯二酚 | 14.44 | 5.79 | 10.20 | 15.66 | 6.27 | 7.90 |
多环酚 | 4.97 | 21.95 | 3.13 | 6.15 | 8.91 | 24.17 |
其他芳环类 | 1.67 | 7.88 | 1.77 | 1.36 | 7.69 | 13.61 |
酸和酮 | 17.31 | 2.76 | 4.97 | 5.47 | 0.29 | 2.14 |
其他 | 5.67 | 22.24 | 13.44 | 12.97 | 12.06 | 21.49 |
收率 | 32.75 | 18.35 | 15.60 | 21.14 | 37.87 | 21.86 |
表1 酚基精馏釜残在20kPa、不同温度下的深拔组分质量分数及收率 (%)
精馏釜残成分 | 河南 | 新疆 | 云南 | |||
---|---|---|---|---|---|---|
0~255℃ | 255~450℃ | 0~250℃ | 250~450℃ | 0~270℃ | 270~550℃ | |
苯酚 | 0.85 | 4.04 | 2.80 | 0.71 | 13.96 | 0.96 |
单取代基苯酚 | 3.27 | 6.06 | 4.01 | 3.29 | 27.16 | 8.10 |
多取代基苯酚 | 6.76 | 3.85 | 5.83 | 6.80 | 14.93 | 4.57 |
苯二酚 | 12.80 | 4.36 | 14.18 | 10.10 | 0.88 | 1.78 |
单取代基苯二酚 | 32.26 | 21.08 | 39.67 | 37.48 | 7.85 | 15.28 |
多取代基苯二酚 | 14.44 | 5.79 | 10.20 | 15.66 | 6.27 | 7.90 |
多环酚 | 4.97 | 21.95 | 3.13 | 6.15 | 8.91 | 24.17 |
其他芳环类 | 1.67 | 7.88 | 1.77 | 1.36 | 7.69 | 13.61 |
酸和酮 | 17.31 | 2.76 | 4.97 | 5.47 | 0.29 | 2.14 |
其他 | 5.67 | 22.24 | 13.44 | 12.97 | 12.06 | 21.49 |
收率 | 32.75 | 18.35 | 15.60 | 21.14 | 37.87 | 21.86 |
组分 | MT-LRPF1 | MT-LRPF2 | MT-Nv |
---|---|---|---|
镁砂5~3mm | 11.0 | 11.0 | 11.0 |
镁砂3~1mm | 26.0 | 26.0 | 26.0 |
镁砂1~0.08mm | 29.0 | 29.0 | 29.0 |
镁砂≤80μm | 20.0 | 20.0 | 20.0 |
石墨≤300μm | 10.5 | 10.5 | 10.5 |
釜残树脂LRPF-1 | 3.5 | — | — |
釜残树脂LRPF-2 | — | 3.5 | |
商用树脂Nv | — | — | 3.5 |
表2 MgO-C砖耐火材料的组分质量分数单位:%
组分 | MT-LRPF1 | MT-LRPF2 | MT-Nv |
---|---|---|---|
镁砂5~3mm | 11.0 | 11.0 | 11.0 |
镁砂3~1mm | 26.0 | 26.0 | 26.0 |
镁砂1~0.08mm | 29.0 | 29.0 | 29.0 |
镁砂≤80μm | 20.0 | 20.0 | 20.0 |
石墨≤300μm | 10.5 | 10.5 | 10.5 |
釜残树脂LRPF-1 | 3.5 | — | — |
釜残树脂LRPF-2 | — | 3.5 | |
商用树脂Nv | — | — | 3.5 |
无机盐种类 | 新疆 | 云南 |
---|---|---|
Na | 5.69 | 26.1 |
Al | 0.189 | 1.47 |
Si | 0.765 | 1.46 |
S | 4.01 | 14.3 |
K | 0.136 | 0.411 |
Ca | 0.236 | 0.233 |
Mn | 0.224 | 0 |
Fe | 55.5 | 13.0 |
Ni | 0.0475 | 1.01 |
Cr | 0.0397 | 1.09 |
Ti | 0 | 0.323 |
表3 酚基精馏釜残非挥发性无机盐X射线荧光光谱分析单位:%(质量分数)
无机盐种类 | 新疆 | 云南 |
---|---|---|
Na | 5.69 | 26.1 |
Al | 0.189 | 1.47 |
Si | 0.765 | 1.46 |
S | 4.01 | 14.3 |
K | 0.136 | 0.411 |
Ca | 0.236 | 0.233 |
Mn | 0.224 | 0 |
Fe | 55.5 | 13.0 |
Ni | 0.0475 | 1.01 |
Cr | 0.0397 | 1.09 |
Ti | 0 | 0.323 |
项目 | 外观 | 黏度(25℃)/Pa·s | 水分/% | 固体含量/% | 残碳量/% | 游离酚/% | pH |
---|---|---|---|---|---|---|---|
YB/T 4131—2005 | 棕黑色透明 | 1~30 | ≤6.5 | ≥75 | ≥40 | ≤12 | 4~7.5 |
Q/0100SQH 001—2018 | 液体 | 1~30 | ≤8.0 | ≥40.0 | ≥25.0 | ≤14.0 | ≤8.0 |
LRPF1 | 棕黑色半透明 | 27~31 | ≤2.0 | ≥77 | ≥35 | ≤8.5 | 4~7 |
LRPF2 | 棕黑色半透明 | 26~30 | ≤3.5 | ≥75 | ≥33 | ≤10 | 4~6 |
商用树脂Nv | 红棕色透明 | 30~36 | ≤6.5 | ≥77 | ≥42 | ≤9.0 | 6.8~7.2 |
表4 耐火用热塑性液体酚醛树脂性能评价
项目 | 外观 | 黏度(25℃)/Pa·s | 水分/% | 固体含量/% | 残碳量/% | 游离酚/% | pH |
---|---|---|---|---|---|---|---|
YB/T 4131—2005 | 棕黑色透明 | 1~30 | ≤6.5 | ≥75 | ≥40 | ≤12 | 4~7.5 |
Q/0100SQH 001—2018 | 液体 | 1~30 | ≤8.0 | ≥40.0 | ≥25.0 | ≤14.0 | ≤8.0 |
LRPF1 | 棕黑色半透明 | 27~31 | ≤2.0 | ≥77 | ≥35 | ≤8.5 | 4~7 |
LRPF2 | 棕黑色半透明 | 26~30 | ≤3.5 | ≥75 | ≥33 | ≤10 | 4~6 |
商用树脂Nv | 红棕色透明 | 30~36 | ≤6.5 | ≥77 | ≥42 | ≤9.0 | 6.8~7.2 |
MgO-C砖 | 体积密度/g·cm-3 | 显气孔率/% | 常温耐压强度/MPa |
---|---|---|---|
MT-LRPF1 | 2.89±0.02 | 4.2±0.3 | 14.8±0.2 |
MT-LRPF2 | 2.90±0.03 | 4.1±0.5 | 15.3±0.3 |
MT-Nv | 2.82±0.02 | 4.4±0.5 | 14.9±0.2 |
表5 MT-LRPF1和MT-LRPF2的基本性能
MgO-C砖 | 体积密度/g·cm-3 | 显气孔率/% | 常温耐压强度/MPa |
---|---|---|---|
MT-LRPF1 | 2.89±0.02 | 4.2±0.3 | 14.8±0.2 |
MT-LRPF2 | 2.90±0.03 | 4.1±0.5 | 15.3±0.3 |
MT-Nv | 2.82±0.02 | 4.4±0.5 | 14.9±0.2 |
组分 | 质量分数/% |
---|---|
C22H33N6O2 | 36.2 |
C19H42N3O3 | 22.1 |
C31H63N12O | 16.3 |
C29H59N12O | 11.86 |
C15H34N6NaO2 | 7.31 |
C15H33N12 | 6.17 |
表6 河南酚基釜残深拔重组分成分分析
组分 | 质量分数/% |
---|---|
C22H33N6O2 | 36.2 |
C19H42N3O3 | 22.1 |
C31H63N12O | 16.3 |
C29H59N12O | 11.86 |
C15H34N6NaO2 | 7.31 |
C15H33N12 | 6.17 |
黏结剂 | 颗粒炭耐磨强度/% |
---|---|
高温煤沥青 | 98.05 |
FCR-0.1 | 98.73 |
FCR-0.15 | 96.71 |
表7 不同黏结剂制备的颗粒炭的耐磨强度性能
黏结剂 | 颗粒炭耐磨强度/% |
---|---|
高温煤沥青 | 98.05 |
FCR-0.1 | 98.73 |
FCR-0.15 | 96.71 |
单元 | 输入 | 输出 | |||
---|---|---|---|---|---|
物料能耗 | 质量 /kg | 能耗 /MJ | 物料 | 质量 /kg | |
单元-1 | 酚基釜残 | 9000 | 轻质酚混合物 | 11790 | |
苯酚 | 8842 | 深拔重质组分 | 6052 | ||
负荷 | 13112 | ||||
单元-2 | 轻质酚混合物 | 11790 | 酚醛树脂 | 14211 | |
甲醛溶液 | 7074 | 含酚废水 | 23010 | ||
催化剂 | 378 | 蒸汽 | 1263 | ||
水 | 19242 | ||||
负荷 | 17535 | ||||
单元-3 | 酚醛树脂 | 14211 | 耐火材料用树脂 | 18650 | |
乙二醇 | 2006 | ||||
HMTA | 1622 | ||||
二茂铁 | 811 | ||||
负荷 | 360 | ||||
单元-4 | 耐火材料用树脂 | 18650 | 镁碳砖 | 466250 | |
镁砂 | 458257 | 废气 | 66607 | ||
石墨 | 55950 | ||||
负荷 | 35840 | ||||
单元-5 | 深拔重质组分 | 6052 | 活性炭黏结剂 | 10979 | |
草酸 | 154 | ||||
甲醛溶液 | 1636 | ||||
乙醇 | 3137 | ||||
负荷 | 731 |
表8 酚基釜残综合利用各单元物料能耗表
单元 | 输入 | 输出 | |||
---|---|---|---|---|---|
物料能耗 | 质量 /kg | 能耗 /MJ | 物料 | 质量 /kg | |
单元-1 | 酚基釜残 | 9000 | 轻质酚混合物 | 11790 | |
苯酚 | 8842 | 深拔重质组分 | 6052 | ||
负荷 | 13112 | ||||
单元-2 | 轻质酚混合物 | 11790 | 酚醛树脂 | 14211 | |
甲醛溶液 | 7074 | 含酚废水 | 23010 | ||
催化剂 | 378 | 蒸汽 | 1263 | ||
水 | 19242 | ||||
负荷 | 17535 | ||||
单元-3 | 酚醛树脂 | 14211 | 耐火材料用树脂 | 18650 | |
乙二醇 | 2006 | ||||
HMTA | 1622 | ||||
二茂铁 | 811 | ||||
负荷 | 360 | ||||
单元-4 | 耐火材料用树脂 | 18650 | 镁碳砖 | 466250 | |
镁砂 | 458257 | 废气 | 66607 | ||
石墨 | 55950 | ||||
负荷 | 35840 | ||||
单元-5 | 深拔重质组分 | 6052 | 活性炭黏结剂 | 10979 | |
草酸 | 154 | ||||
甲醛溶液 | 1636 | ||||
乙醇 | 3137 | ||||
负荷 | 731 |
输入 | 价格/CNY·t-1 | 输出 | 价格/CNY·t-1 |
---|---|---|---|
酚基釜残 | 600 | 含酚废水 | -2 |
苯酚 | 9300 | 镁碳砖 | 4000 |
甲醛溶液 | 1300 | 废气 | -1 |
草酸 | 3800 | 活性炭黏结剂 | 3500 |
水 | 3 | ||
乙二醇 | 5000 | ||
HMTA | 7000 | ||
二茂铁 | 60000 | ||
镁砂 | 3000 | ||
石墨 | 4000 | ||
甲醛溶液 乙醇 | 1300 7000 |
表9 酚基釜残综合利用成本估算假设
输入 | 价格/CNY·t-1 | 输出 | 价格/CNY·t-1 |
---|---|---|---|
酚基釜残 | 600 | 含酚废水 | -2 |
苯酚 | 9300 | 镁碳砖 | 4000 |
甲醛溶液 | 1300 | 废气 | -1 |
草酸 | 3800 | 活性炭黏结剂 | 3500 |
水 | 3 | ||
乙二醇 | 5000 | ||
HMTA | 7000 | ||
二茂铁 | 60000 | ||
镁砂 | 3000 | ||
石墨 | 4000 | ||
甲醛溶液 乙醇 | 1300 7000 |
项目 | 费用/×103CNY·d-1 |
---|---|
操作费用 | 1860.88 |
原料费用 | 1701.13 |
产品销售额 | 1915.87 |
公用工程费用 | 0.47022 |
设备及安装成本 | 9261.33 |
表10 酚基釜残综合利用经济评价表
项目 | 费用/×103CNY·d-1 |
---|---|
操作费用 | 1860.88 |
原料费用 | 1701.13 |
产品销售额 | 1915.87 |
公用工程费用 | 0.47022 |
设备及安装成本 | 9261.33 |
处理方式 | 经济效益/CNY·t-1 |
---|---|
填埋 | -1787 |
焚烧 | 829 |
热转化综合利用 | 5493 |
表11 釜残不同处理方式效益对比
处理方式 | 经济效益/CNY·t-1 |
---|---|
填埋 | -1787 |
焚烧 | 829 |
热转化综合利用 | 5493 |
1 | DUAN Huabo, HUANG Qifei, WANG Qi, et al. Hazardous waste generation and management in China: a review[J]. Journal of Hazardous Materials, 2008, 158(2/3): 221-227. |
2 | 王雄雷, 牛艳霞, 刘刚, 等. 煤焦油渣处理技术的研究进展[J]. 化工进展, 2015, 34(7): 2016-2022. |
WANG Xionglei, NIU Yanxia, LIU Gang, et al. Research progress of coal tar residue treatment technology[J]. Chemical Industry and Engineering Progress, 2015, 34(7): 2016-2022. | |
3 | 蒋学先. 浅论我国危险废物处理处置技术现状[J]. 金属材料与冶金工程, 2009, 37(4): 57-60. |
JIANG Xuexian. Discussion on the current status of treatment and disposal technology for hazardous waste in our country[J]. Metal Materials and Metallurgy Engineering, 2009, 37(4): 57-60. | |
4 | STORM C, RUD¨IGER H, SPLIETHOFF H, et al. Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(1): 55-63. |
5 | MA Yuhui, SU Wei, WANG Qunhui, et al. Discharge and disposal of coking residue and distribution characteristics of PAHs in it[J]. Applied Mechanics and Materials, 2013, 448/449/450/451/452/453: 448-452. |
6 | ROCHA E R L, LOPES M S, MACIEL M R W, et al. Recovery and characterization of petroleum residues through the molecular distillation process[J]. Petroleum Science and Technology, 2014, 32(20): 2450-2457. |
7 | AN Zhenwei H, KONG Shunli, CHENG Jing, et al. Preparation of efficient carbon-based adsorption material using asphaltenes from asphalt rocks[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14785-14794. |
8 | 马媛, 杜金泽, 周静, 等. 酚基釜残深拔残渣分析及其热转化制备CO2吸附材料[J]. 化学工业与工程, 2021, 38(1): 43-52. |
MA Yuan, DU Jinze, ZHOU Jing, et al. Chemical analysis of the phenolic tar residue and its potential conversion to CO2 adsorbents by thermal treatment[J]. Chemical Industry and Engineering, 2021, 38(1): 43-52. | |
9 | KA BE T, ISHIHARA A, QIAN E W, et al. Coal and coal-related compounds: structures, reactivity and catalytic reactions[M]. Amsterdam: Elsevier, 2004. |
10 | VAEZ I M, PASSANDIDEH-FARD M, MOGHIMAN M, et al. Gasification of heavy fuel oils: a thermochemical equilibrium approach[J]. Fuel, 2011, 90(2): 878-885. |
11 | HIR ANO K, ASAMI M. Phenolic resins—100 years of progress and their future[J]. Reactive and Functional Polymers, 2013, 73(2): 256-269. |
12 | 黄发荣, 焦杨声. 酚醛树脂及其应用[M]. 北京: 化学工业出版社, 2003. |
HU ANG Farong, JIAO Yangsheng. Phenolic resin and its application[M]. Beijing: Chemical Industry Press, 2003. | |
13 | DEMCHUK Y, SIDUN I, GUNKA V, et al. Effect of phenol-cresol-formaldehyde resin on adhesive and physico-mechanical properties of road bitumen[J]. Chemistry & Chemical Technology, 2018, 12(4): 456-461. |
14 | PYSHYE V S, DEMCHUK Y, GUNKA V, et al. Development of mathematical model and identification of optimal conditions to obtain phenol-cresol-formaldehyde resin[J]. Chemistry & Chemical Technology, 2019, 13(2): 212-217. |
15 | PAN H, SHUPE T F, HSE C Y. Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins[J]. Journal of Applied Polymer Science, 2008, 108(3): 1837-1844. |
16 | ZHAO Yong, YAN Ning, FENG M. Synthesis and characterization of bio-based phenol-formaldehyde resol resins from bark autoclave extractives[J]. Forest Products Journal, 2016, 66(1/2): 18-28. |
17 | ZHOU Jing, HU Lihong, LIANG Bingchuan, et al. Preparation and characterization of novolac phenol-formaldehyde resins with enzymatic hydrolysis lignin[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54: 178-182. |
18 | SOLT P, HERWIJNEN H W G VAN, KONNERTH J. Thermoplastic and moisture-dependent behavior of lignin phenol formaldehyde resins[J]. Journal of Applied Polymer Science, 2019, 136(40): 48011. |
19 | YAN Liangcong, CUI Yuhu, GOU Guangjun, et al. Liquefaction of lignin in hot-compressed water to phenolic feedstock for the synthesis of phenol-formaldehyde resins[J]. Composites Part B: Engineering, 2017, 112: 8-14. |
20 | CHEN Min, WANG Nan, YU Jingkun, et al. Effect of porosity on carbonation and hydration resistance of CaO materials[J]. Journal of the European Ceramic Society, 2007, 27(4): 1953-1959. |
21 | 张碧芳, 王光华. 碳质耐火材料粘结剂的研究[J]. 粘接, 1988, 9(4): 8-12. |
ZHANG Bifang, WANG Guanghua. Studies on carbon refractory bonding agent[J]. Adhesion in China, 1988, 9(4): 8-12. | |
22 | 裘晓鹏, 罗小勇, 陈亮, 等. 危险废物刚性填埋场设计与经济性分析[J]. 环境卫生工程, 2020, 28(6): 80-85. |
QIU Xiaopeng, LUO Xiaoyong, CHEN Liang, et al. Design and economic analysis of rigid landfill for hazardous waste[J]. Environmental Sanitation Engineering, 2020, 28(6): 80-85. | |
23 | 李庆辉. 药业公司危险废物资源化处理工艺方案设计[D]. 济南: 山东大学, 2016. |
LI Qinghui. Process design for treatment of hazardous waster from a pharmaceutical company[D]. Jinan: Shandong University, 2016. |
[1] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[2] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[3] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[4] | 杨红梅, 高涛, 鱼涛, 屈撑囤, 高家朋. 高铁酸盐处理难降解有机物磺化酚醛树脂[J]. 化工进展, 2023, 42(6): 3302-3308. |
[5] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[6] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[7] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[8] | 郭宇晨, 刘庆林, 蒋金洋, 宗永忠, 王金伟, 李臻, 吕树祥. 含铬污泥资源化方法研究进展[J]. 化工进展, 2023, 42(2): 575-584. |
[9] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[10] | 刘楠, 胡一铭, 杨颖, 李红晋, 高竹青, 郝秀丽. 废旧聚丙烯/活性炭微波共裂解制取可燃裂解气与轻质裂解油[J]. 化工进展, 2022, 41(S1): 150-159. |
[11] | 刘大晨, 杜明慧, 王衡. 交联型特辛基酚醛树脂酚羟基间位的溴化改性[J]. 化工进展, 2022, 41(S1): 382-388. |
[12] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[13] | 高宁博, 胡雅迪, 全翠. 餐厨垃圾的热转化和生物处理研究进展[J]. 化工进展, 2022, 41(S1): 507-515. |
[14] | 孙宪航, 任铸, 张国军, 孙媛, 范开峰, 黄维秋. 超临界CO2作用下甲苯在活性炭中的脱附机理[J]. 化工进展, 2022, 41(S1): 631-636. |
[15] | 何晨露, 邱晨茜, 方娟, 杨旋, 赖建军, 郑新宇, 吕建华, 陈燕丹, 黄彪. 基于低共熔溶剂体系的氮掺杂超级电容炭[J]. 化工进展, 2022, 41(9): 4946-4953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |