化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3146-3154.DOI: 10.16085/j.issn.1000-6613.2022-0184

• 材料科学与技术 • 上一篇    下一篇

β-NaYF4:Yb3+,Tm3+/g-C3N4复合水凝胶材料的制备及其应用

陈彰旭1,2,3(), 陈冰冰1,2,3, 王荣财1,2,3, 叶晨光1,2,3, 郑炳云1,2,3   

  1. 1.莆田学院环境与生物工程学院,福建 莆田 351100
    2.福建省新型污染物生态毒理效应与控制重点实验室,福建 莆田 351100
    3.福建省高校生态环境及其信息图谱重点实验室,福建 莆田 351100
  • 收稿日期:2022-01-28 修回日期:2022-03-04 出版日期:2022-06-10 发布日期:2022-06-21
  • 通讯作者: 陈彰旭
  • 作者简介:陈彰旭(1977—),男,博士,副教授,硕士生导师,研究方向为环境功能材料。E-mail:xuzhangchen@163.com
  • 基金资助:
    国家自然科学基金(51778598);福建省自然科学基金(2015J01644);国家级大学生创新项目(202011498004);2018年福建省科技特派员资金项目;2021年莆田市科技特派员资金项目;福建省教育厅A类项目(JAT200537)

Preparation and application of β-NaYF4:Yb3+,Tm3+/g-C3N4 composite hydrogel

CHEN Zhangxu1,2,3(), CHEN Bingbing1,2,3, WANG Rongcai1,2,3, YE Chenguang1,2,3, ZHENG Bingyun1,2,3   

  1. 1.College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China
    2.Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian 351100, Fujian, China
    3.Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University, Putian 351100, Fujian, China
  • Received:2022-01-28 Revised:2022-03-04 Online:2022-06-10 Published:2022-06-21
  • Contact: CHEN Zhangxu

摘要:

为了有效解决日益严重的水污染问题,本文研究了β-NaYF4: Yb3+, Tm3+/g-C3N4复合材料的制备及其在可见光下催化降解亚甲基蓝模拟废水的最佳工艺条件。首先,利用溶剂热法合成了β-NaYF4: Yb3+, Tm3+,再将煅烧法制备的 g-C3N4加入聚丙烯酸/聚乙烯醇水溶液,后滴入饱和硼酸溶液获得β-NaYF4: Yb3+, Tm3+/g-C3N4/聚丙烯酸/聚乙烯醇复合水凝胶。利用X射线衍射仪、场发射扫描电子显微镜、紫外-可见分光光度计、热重分析仪、全自动比表面积微孔孔隙分析仪等进行表征;利用正交试验L16(45)考察复合材料的投加量、复合材料的比例、温度、亚甲基蓝溶液的pH、光照时间等因素,探索降解亚甲基蓝的最佳工艺条件。正交试验结果表明:光照时间为20.0h、pH为7.00、复合材料的投加量0.25g、温度20.0℃、复合材料活性组分β-NaYF4: Yb3+, Tm3+与g-C3N4的比例为1∶4,此时对30.0mg/L亚甲基蓝降解率达到94.84%,循环降解亚甲基蓝模拟废水4次后的降解率仍高达为86.22%。

关键词: β-NaYF4:Yb3+,Tm3+, 氮化碳, 水凝胶, 亚甲基蓝, 复合材料, 催化, 降解, 再生

Abstract:

To deal with the problem of water pollution effectively, the preparation of β-NaYF4: Yb3+, Tm3+/g-C3N4 composites and the optimum conditions for photocatalytic degrading methylene blue wastewater under visible light were studied. β-NaYF4: Yb3+, Tm3+ and g-C3N4 were synthesized by solvothermal method and calcinations method, respectively. Then, β-NaYF4: Yb3+, Tm3+ and g-C3N4 were mixed and added into the solution of polyacrylic acid-polyvinyl alcohol. The β-NaYF4: Yb3+, Tm3+/g-C3N4/PAA/PVA composite hydrogel was formed by adding the above mixed solution to the saturated borate aqueous solution dropwise with hard stirring. The products were characterized by X-ray diffractometer, field emission scanning electron microscope, UV-visible spectrophotometer, thermal gravimetric analyzer and specific surface area microporous pore analyzer and so on. The orthogonal experiment L16 (45) was used to explore the optimal conditions for degrading methylene blue. The results showed that the degradation rate of methylene blue in 30mg/L was 94.84% under the optimal conditions of the illumination time 20.0 h, the pH value 7.00, the dosage of composite materials 0.25 g, the temperature 20.0℃ and the ratio of active material β-NaYF4: Yb3+, Tm3+ to g-C3N4 1∶4. Moreover, the degradation rate of methylene blue in simulated wastewater was still up to 86.22% after 4 recycles. This study revealed that the prepared composite had a good practical value for the application in wastewater treatment.

Key words: β-NaYF4: Yb3+, Tm3+, g-C3N4, hydrogel, methylene blue, composites, catalysis, degradation, regeneration

中图分类号: 

版权所有 © 《化工进展》编辑部


本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn