化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3022-3037.DOI: 10.16085/j.issn.1000-6613.2021-1308
收稿日期:
2021-06-23
修回日期:
2021-09-06
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
付时雨
作者简介:
沈娟莉(1994—),女,博士研究生,研究方向为纤维基水凝胶。E-mail:基金资助:
Received:
2021-06-23
Revised:
2021-09-06
Online:
2022-06-10
Published:
2022-06-21
Contact:
FU Shiyu
摘要:
纤维素是世界上最丰富的天然、可再生以及可生物降解的高分子材料,在化工、材料等领域有广泛的应用。本文主要对近几年来纤维素基水凝胶的研究进展进行了归纳总结。首先,介绍了纤维素基水凝胶的研究背景。其次,列举了纤维素水基凝胶的交联方法,主要有物理交联与化学交联。其中物理交联有氢键交联、疏水性交联、离子交联等,化学交联则是酯化交联、迈克尔加成、自由基共聚合、动态共价键交联等。最后,重点介绍了纤维素基水凝胶在可降解性、生物医学性、亲水性、吸附性、导电性等领域方面的应用。此外,对于纤维素基水凝胶材料在高机械性和产业化制备等方面的发展进行了展望。
中图分类号:
沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037.
SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037.
编号 | 名称 | 刺激响应类型 | 应用 | 参考文献 |
---|---|---|---|---|
1 | MC-TPE | 热响应性 | 荧光热传感器 | [ |
2 | PNIPAM/SA-TOCNF | 热敏性和pH敏性 | 智能传感器 | [ |
3 | CD/trans-AAP | 光响应和离子响应 | 自修复和控制药物释放 | [ |
4 | DNA/联吡啶二乙烯 | 光、氧化还原和化学 | 驱动器、传感器或机器人 | [ |
5 | BC-g-PSS | 离子响应 | 给药、组织工程 | [ |
6 | BC/SA/MWCNTs | pH、电场响应 | 给药 | [ |
表1 制备的各种纤维素水凝胶的不同刺激响应性能以及应用
编号 | 名称 | 刺激响应类型 | 应用 | 参考文献 |
---|---|---|---|---|
1 | MC-TPE | 热响应性 | 荧光热传感器 | [ |
2 | PNIPAM/SA-TOCNF | 热敏性和pH敏性 | 智能传感器 | [ |
3 | CD/trans-AAP | 光响应和离子响应 | 自修复和控制药物释放 | [ |
4 | DNA/联吡啶二乙烯 | 光、氧化还原和化学 | 驱动器、传感器或机器人 | [ |
5 | BC-g-PSS | 离子响应 | 给药、组织工程 | [ |
6 | BC/SA/MWCNTs | pH、电场响应 | 给药 | [ |
序号 | 名称 | 性能 | 应用 | 参考文献 |
---|---|---|---|---|
1 | XG-PAM/CNF | 附着力好,机械强度高,离子吸附能力强 | 水下报警救援系统 | [ |
2 | 聚吡咯/纤维素混杂水凝胶 | 电容性能,高比电容、良好的机械强度和柔韧性 | 电极材料 | [ |
3 | TOCNF-GN/PAA | 机械强度、电导率、自修复优良 | 机器人,电子皮肤 | [ |
4 | 超长银纳米线复合双网络水凝胶 | 超拉伸、自愈合和可穿戴性 | 可穿戴表皮传感器 | [ |
5 | DCIHs | 超拉伸性、高压缩性、优良的防冻性能 | 柔性电子器件 | [ |
表2 各种柔性材料在不同领域中的应用
序号 | 名称 | 性能 | 应用 | 参考文献 |
---|---|---|---|---|
1 | XG-PAM/CNF | 附着力好,机械强度高,离子吸附能力强 | 水下报警救援系统 | [ |
2 | 聚吡咯/纤维素混杂水凝胶 | 电容性能,高比电容、良好的机械强度和柔韧性 | 电极材料 | [ |
3 | TOCNF-GN/PAA | 机械强度、电导率、自修复优良 | 机器人,电子皮肤 | [ |
4 | 超长银纳米线复合双网络水凝胶 | 超拉伸、自愈合和可穿戴性 | 可穿戴表皮传感器 | [ |
5 | DCIHs | 超拉伸性、高压缩性、优良的防冻性能 | 柔性电子器件 | [ |
1 | SHARMA Gaurav, THAKUR Bharti, NAUSHAD Mu, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection[J]. Environmental Chemistry Letters, 2018, 16(1): 113-146. |
2 | VLIERBERGHE S VAN, DUBRUEL P, SCHACHT E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review[J]. Biomacromolecules, 2011, 12(5): 1387-1408. |
3 | DAI Lin, MA Mingshuai, XU Jikun, et al. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation[J]. Chemistry of Materials, 2020, 32(10): 4324-4330. |
4 | KONO Hiroyuki, FUJITA Sayaka. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1, 2, 3, 4-butanetetracarboxylic dianhydride[J]. Carbohydrate Polymers, 2012, 87(4): 2582-2588. |
5 | SONG Delong, ZHAO Yulin, DONG Chunxu, et al. Surface modification of cellulose fibers by starch grafting with crosslinkers[J]. Journal of Applied Polymer Science, 2009, 113(5): 3019-3026. |
6 | KANG Hongliang, LIU Ruigang, HUANG Yong. Cellulose-based gels[J]. Macromolecular Chemistry and Physics, 2016, 217(12): 1322-1334. |
7 | GHORBANI Sadegh, EYNI Hossein, BAZAZ Sajad Razavi, et al. Hydrogels based on cellulose and its derivatives: applications, synthesis, and characteristics[J]. Polymer Science, Series A, 2018, 60(6): 707-722. |
8 | OVALLE-SERRANO Sergio A, DÍAZ-SERRANO Laura A, HONG Caroline, et al. Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles[J]. Cellulose, 2020, 27(17): 9947-9961. |
9 | SUN Xiaohang, TYAGI Preeti, AGATE Sachin, et al. Unique thermo-responsivity and tunable optical performance of poly(N-isopropylacrylamide)-cellulose nanocrystal hydrogel films[J]. Carbohydrate Polymers, 2019, 208: 495-503. |
10 | ABDEEN Zain, SAEED Rehana. Ionic interactions in cross-linked poly(vinyl alcohol) hydrogel blended with starch[J]. Revue Roumaine De Chimie, 2019, 64(3): 233-240. |
12 | KONO Hiroyuki, FUJITA Sayaka, OEDA Ikuo. Comparative study of homogeneous solvents for the esterification crosslinking of cellulose with 1,2,3,4-butanetetracarboxylic dianhydride and water absorbency of the reaction products[J]. Journal of Applied Polymer Science, 2013, 127(1): 478-486. |
13 | BULUT Emine. Ibuprofen microencapsulation within acrylamide-grafted chitosan and methylcellulose interpenetrating polymer network microspheres: synthesis, characterization, and release studies[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44(4): 1098-1108. |
14 | LIU Hongchen, SUI Xiaofeng, XU Hong, et al. Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds[J]. Macromolecular Materials and Engineering, 2016, 301(6): 725-732. |
15 | SHAO Changyou, WANG Meng, CHANG Huanliang, et al. A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6167-6174. |
16 | SANNINO A, MADAGHIELE M, CONVERSANO F, et al. Cellulose derivative-hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability[J]. Biomacromolecules, 2004, 5(1): 92-96. |
17 | LIN Ong Hui, KUMAR R N, ROZMAN H D, et al. Grafting of sodium carboxymethylcellulose (CMC) with glycidyl methacrylate and development of UV curable coatings from CMC-g-GMA induced by cationic photoinitiators[J]. Carbohydrate Polymers, 2005, 59(1): 57-69. |
18 | SANNINO A, NICOLAIS L. Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels[J]. Polymer, 2005, 46(13): 4676-4685. |
19 | RAHMAN Mohammed Mizanur, RIMU Sunzida H. Recent development in cellulose nanocrystal-based hydrogel for decolouration of methylene blue from aqueous solution: a review[J]. International Journal of Environmental Analytical Chemistry, 2020: 1-18. |
20 | KAMOUN Elbadawy A, CHEN Xin, MOHY ELDIN Mohamed S, et al. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers[J]. Arabian Journal of Chemistry, 2015, 8(1): 1-14. |
21 | POLO Ester, ARABAN Vida, PELAZ Beatriz, et al. Photothermal effects on protein adsorption dynamics of PEGylated gold nanorods[J]. Applied Materials Today, 2019, 15: 599-604. |
22 | MOHAMMADINEJAD Reza, MALEKI Hajar, Eneko LARRAÑETA, et al. Status and future scope of plant-based green hydrogels in biomedical engineering[J]. Applied Materials Today, 2019, 16: 213-246. |
23 | LU Chuanwei, WANG Chunpeng, WANG Jifu, et al. Integration of hydrogen bonding interaction and Schiff-base chemistry toward self-healing, anti-freezing, and conductive elastomer[J]. Chemical Engineering Journal, 2021, 425: 130652. |
24 | ZHAO Ting, ZHANG Shanshan, BI Yuting, et al. Development and characterisation of multi-form composite materials based on silver nanoclusters and cellulose nanocrystals[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125257. |
25 | WANG Wei, NI Jiaming, CHEN Licai, et al. Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation[J]. International Journal of Biological Macromolecules, 2020, 165: 1-10. |
26 | FREDRICK Rahul, PODDER Arup, VISWANATHAN Aparna, et al. Synthesis and characterization of polysaccharide hydrogel based on hydrophobic interactions[J]. Journal of Applied Polymer Science, 2019, 136(25): 47665. |
27 | OKUBO Masanori, IOHARA Daisuke, ANRAKU Makoto, et al. A thermoresponsive hydrophobically modified hydroxypropylmethylcellulose/cyclodextrin injectable hydrogel for the sustained release of drugs[J]. International Journal of Pharmaceutics, 2020, 575: 118845. |
28 | CHEN Wei, LI Delin, BU Yunhao, et al. Design of strong and tough methylcellulose-based hydrogels using kosmotropic Hofmeister salts[J]. Cellulose, 2020, 27(3): 1113-1126. |
29 | ZHANG Baichao, WANG Chao, WANG Yinchuan, et al. A facile method to synthesize strong salt-enhanced hydrogels based on reversible physical interaction[J]. Soft Matter, 2020, 16(3): 738-746. |
30 | MASRUCHIN Nanang, PARK Byung Dae, CAUSIN Valerio. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 265-272. |
31 | JANARTHANAN Gopinathan, TRAN Hao Nguyen, Eunchong CHA, et al. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications[J]. Materials Science and Engineering: C, 2020, 113: 111008. |
32 | CHEN Wei, BU Yunhao, LI Delin, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose[J]. Cellulose, 2020, 27(2): 853-865. |
33 | 成玮楠. 基于单组分凝胶因子主客体作用的多响应超分子水凝胶[D]. 武汉: 华中科技大学, 2018. |
CHENG Weinan. Multi-responsive supramolecular hydrogel based on host-guest interaction from mono-component gelator[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
34 | QU Dahui, WANG Qiaochun, ZHANG Qiwei, et al. Photoresponsive host-guest functional systems[J]. Chemical Reviews, 2015, 115(15): 7543-7588. |
35 | QI Lin, PENG Zhongkai, HUI Zhujin, et al. Iodine controlled pillar[5]arene-based multiresponsive supramolecular polymer for fluorescence detection of cyanide, mercury, and cysteine[J]. Macromolecules, 2017, 50(20): 7863-7871. |
36 | QUAN Changyun, CHEN Jingxiao, WANG Huiyuan, et al. Core-shell nanosized assemblies mediated by the alpha-beta cyclodextrin dimer with a tumor-triggered targeting property[J]. ACS Nano, 2010, 4(7): 4211-4219. |
37 | POULIQUEN G, AMIEL C, TRIBET C. Photoresponsive viscosity and host-guest association in aqueous mixtures of poly-cyclodextrin with azobenzene-modified poly(acrylic)acid[J]. The Journal of Physical Chemistry B, 2007, 111(20): 5587-5595. |
38 | GUO Xuhong, WANG Jie, LI Li, et al. Tailoring polymeric hydrogels through cyclodextrin host-guest complexation[J]. Macromolecular Rapid Communications, 2010, 31(3): 300-304. |
39 | REKHARSKY Mikhail V, INOUE Yoshihisa. Solvent and guest isotope effects on complexation thermodynamics of α-, β-, and 6-amino-6-deoxy-β-cyclodextrins[J]. Journal of the American Chemical Society, 2002, 124(41): 12361-12371. |
40 | ZHANG Jianxiang, MA Peter X. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective[J]. Advanced Drug Delivery Reviews, 2013, 65(9): 1215-1233. |
41 | DUAN Jiufang, JIANG Jianxin, HAN Chunrui, et al. The study of intermolecular inclusion in cellulose physical gels[J]. BioResources, 2014, 9(3): 4006-4013. |
42 | JIAN Chunmei, LIU Bowen, CHEN Xi, et al. Construction of photoresponsive supramolecular micelles based on ethyl cellulose graft copolymer[J]. Chinese Journal of Polymer Science, 2014, 32(6): 690-702. |
43 | LIN Ning, DUFRESNE Alain. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin[J]. Biomacromolecules, 2013, 14(3): 871-880. |
44 | ZHANG Peng, QIAN Xiaoping, ZHANG Zhengkui, et al. Supramolecular amphiphilic polymer-based micelles with seven-armed polyoxazoline coating for drug delivery[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 5768-5777. |
45 | MIZUNO Shunsuke, ASOH Taka Aki, TAKASHIMA Yoshinori, et al. Cyclodextrin cross-linked polymer monolith for efficient removal of environmental pollutants by flow-through method[J]. Polymer Degradation and Stability, 2019, 160: 136-141. |
46 | SUGAWARA A, ASOH T A, TAKASHIMA Y, et al. Composite hydrogels reinforced by cellulose-based supramolecular filler[J]. Polymer Degradation and Stability, 2020, 177: 109157. |
47 | YANG Li, WANG Ting. Preparation of cellulosic drug-loaded hydrogel beads through electrostatic and host-guest interactions[J]. Journal of Applied Polymer Science, 2018, 135(31): 46593. |
48 | HAN Shuai, WANG Ting, YANG Li, et al. Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism[J]. International Journal of Biological Macromolecules, 2017, 105: 377-384. |
49 | TSUCHIYA Hinako, SINAWANG Garry, ASOH Taka-Aki, et al. Supramolecular biocomposite hydrogels formed by cellulose and host-guest polymers assisted by calcium ion complexes[J]. Biomacromolecules, 2020, 21(9): 3936-3944. |
50 | SENNA André M, BOTARO Vagner R. Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil[J]. Journal of Controlled Release, 2017, 260: 194-201. |
51 | KONO Hiroyuki, ZAKIMI Morito. Preparation, water absorbency, and enzyme degradability of novel chitin- and cellulose/chitin-based superabsorbent hydrogels[J]. Journal of Applied Polymer Science, 2013, 128(1): 572-581. |
52 | BHATTACHARYYA Ruma, Samit Kumar RAY. Kinetic and equilibrium modeling for adsorption of textile dyes in aqueous solutions by carboxymethyl cellulose/poly(acrylamide-co-hydroxyethyl methacrylate) semi-interpenetrating network hydrogel[J]. Polymer Engineering & Science, 2013, 53(11): 2439-2453. |
53 | SPAGNOL Cristiane, RODRIGUES Francisco H A, NETO Alberto G V C, et al. Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers[J]. European Polymer Journal, 2012, 48(3): 454-463. |
54 | MOHY ELDIN M S, OMER A M, SOLIMAN E A, et al. Superabsorbent polyacrylamide grafted carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization[J]. Desalination and Water Treatment, 2013, 51(16/17/18): 3196-3206. |
55 | MA Lei, ZHANG Yu, WANG Xiaoyu, et al. Poly (acrylic acid-co-N-methylol acrylamide-co-butyl acrylate) copolymer grafted carboxymethyl cellulose binder for silicon anode in lithium ion batteries[J]. Journal of Applied Electrochemistry, 2021, 51(2): 131-141. |
56 | MA M L, YANG J M, YE Z P, et al. A facile strategy for synergistic integration of dynamic covalent bonds and hydrogen bonds to surmount the tradeoff between mechanical property and self-healing capacity of hydrogels[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000577. |
57 | YANG Xuefeng, LIU Guoqiang, PENG Liao, et al. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture[J]. Advanced Functional Materials, 2017, 27(40): 1703174. |
58 | MENG Xiangtao, EDGAR Kevin J. “Click” reactions in polysaccharide modification[J]. Progress in Polymer Science, 2016, 53: 52-85. |
59 | JEWETT John C, BERTOZZI Carolyn R. Cu-free click cycloaddition reactions in chemical biology[J]. Chemical Society Reviews, 2010, 39(4): 1272-1279. |
60 | MOHAMED Amina L, SOLIMAN Ahmed A F, Eman AboBakr ALI, et al. Hydrogel bioink based on clickable cellulose derivatives: synthesis, characterization and in vitro assessment[J]. International Journal of Biological Macromolecules, 2020, 163: 888-897. |
61 | MCOSCAR Thomas V C, GRAMLICH William M. Hydrogels from norbornene-functionalized carboxymethyl cellulose using a UV-initiated thiol-ene click reaction[J]. Cellulose, 2018, 25(11): 6531-6545. |
62 | YANG Jiayi, MEDRONHO Bruno, LINDMAN Björn, et al. Simple one pot preparation of chemical hydrogels from cellulose dissolved in cold LiOH/urea[J]. Polymers, 2020, 12(2): 373. |
63 | KONO Hiroyuki, ONISHI Kenta, NAKAMURA Taichi. Characterization and bisphenol A adsorption capacity of β-cyclodextrin-carboxymethylcellulose-based hydrogels[J]. Carbohydrate Polymers, 2013, 98(1): 784-792. |
64 | CHANG Chunyu, HE Meng, ZHOU Jinping, et al. Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels[J]. Macromolecules, 2011, 44(6): 1642-1648. |
65 | QU Jianhua, MENG Qingjuan, LIN Xiufeng, et al. Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb(II) from water: adsorptive performance and mechanism exploration[J]. The Science of the Total Environment, 2021, 752: 141854. |
66 | SALLEH Kushairi Mohd, ZAKARIA Sarani, GAN Sinyee, et al. Interconnected macropores cryogel with nano-thin crosslinked network regenerated cellulose[J]. International Journal of Biological Macromolecules, 2020, 148: 11-19. |
67 | XU Ran, ZHOU Junjie, GONG Hongyu, et al. Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte[J]. Biomaterials Science, 2022, 10: 1476-1485. |
68 | ZHANG Min, WAN Yu, WEN Yunxuan, et al. A novel poly(vinyl alcohol)/carboxymethyl cellulose/yeast double degradable hydrogel with yeast foaming and double degradable property[J]. Ecotoxicology and Environmental Safety, 2020, 187: 109765. |
69 | YANG Yongyan, XU Lifeng, WANG Jinfei, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications[J]. Carbohydrate Polymers, 2022: 119161. |
70 | QIU Xiaoyun, HU Shuwen. Smart materials based on cellulose: a review of the preparations, properties, and applications[J]. Materials, 2013, 6(3): 738-781. |
71 | 刘慰, 司传领, 杜海顺, 等. 纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J]. 林业工程学报, 2019, 4(5): 11-19. |
LIU Wei, SI Chuanling, DU Haishun, et al. Advance in preparation of nanocellulose-based hydrogels and their biomedical applications[J]. Journal of Forestry Engineering, 2019, 4(5): 11-19. | |
72 | YAN Mingzhu, CHEN Tiantian, ZHANG Shuping, et al. A core-shell structured alginate hydrogel beads with tunable thickness of carboxymethyl cellulose coating for pH responsive drug delivery[J]. Journal of Biomaterials Science Polymer Edition, 2021, 32(6): 763-778. |
73 | SHEIKHY Shabnam, SAFEKORDI Ali Akbar, GHORBANI Marjan, et al. Synthesis of novel superdisintegrants for pharmaceutical tableting based on functionalized nanocellulose hydrogels[J]. International Journal of Biological Macromolecules, 2021, 167: 667-675. |
74 | ZHANG Weijie, SHAO Chunyi, YU Fei, et al. Y-27632 promotes the repair effect of umbilical cord blood-derived endothelial progenitor cells on corneal endothelial wound healing[J]. Cornea, 2021, 40(2): 203-214. |
75 | CARTHY SIMON J MC, GREGORY KENTON W, MORGAN JOHN W. Antimicrobial barriers, systems, and methods formed from hydrophilic polymer structures such as chitosan: EP1830755[P]. 2007-09-12. |
76 | TANG Shuo, CHI Kai, XU Hui, et al. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications[J]. Carbohydrate Polymers, 2021, 252: 117123. |
77 | WANG Li, HU Sanming, ULLAH Muhammad Wajid, et al. Enhanced cell proliferation by electrical stimulation based on electroactive regenerated bacterial cellulose hydrogels[J]. Carbohydrate Polymers, 2020, 249: 116829. |
78 | LUO Huize, Ruitao CHA, LI Juanjuan, et al. Advances in tissue engineering of nanocellulose-based scaffolds: a review[J]. Carbohydrate Polymers, 2019, 224: 115144. |
79 | PANDEY Abhishek. Pharmaceutical and biomedical applications of cellulose nanofibers: a review[J]. Environmental Chemistry Letters, 2021, 19(3): 2043-2055. |
80 | PATEL Dinesh K, DUTTA Sayan Deb, GANGULY Keya, et al. Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery[J]. International Journal of Biological Macromolecules, 2021, 170: 178-188. |
81 | MA Jianzhong, LI Xiaolu, BAO Yan. Advances in cellulose-based superabsorbent hydrogels[J]. RSC Advances, 2015, 5(73): 59745-59757. |
82 | NASCIMENTO Diego M, NUNES Yana L, FIGUEIRÊDO Maria C B, et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues[J]. Green Chemistry, 2018, 20(11): 2428-2448. |
83 | KABIR S M F, SIKDAR P P, HAQUE B, et al. Cellulose-based hydrogel materials: chemistry, properties and their prospective applications[J]. Progress in Biomaterials, 2018, 7(3): 153-174. |
84 | HAQUE Md Obaidul, MONDAL Md Ibrahim H, SAYEED Md Abu, et al. Formation and development of eco-friendly antimicrobial superabsorbent hydrogel for personal healthcare[C]//2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). July 11-12, 2019, Rajshahi, Bangladesh. IEEE, 2019: 1-4. |
85 | CHEN Si, ZHOU Bo, MA Meng, et al. Multiporous microstructure for enhancing the water absorption and swelling rate in poly(sodium acrylic acid) superabsorbent hydrogels based on a novel physical and chemical composite foaming system[J]. Journal of Applied Polymer Science, 2016, 133(46): 44149. |
86 | SANNINO Alessandro, DEMITRI Christian, MADAGHIELE Marta. Biodegradable cellulose-based hydrogels: design and applications[J]. Materials, 2009, 2(2): 353. |
87 | DAS D, PRAKASH P, ROUT P, et al. Synthesis and characterization of superabsorbent cellulose-based hydrogel for agriculture application[J]. Starch-Stärke, 2021, 73(1/2): 1900284. |
88 | CALCAGNILE P, SIBILLANO T, GIANNINI C, et al. Biodegradable poly(lactic acid)/cellulose-based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications[J]. Journal of Applied Polymer Science, 2019, 136(2): 47546. |
89 | 陆秀萍. 刺激响应型有机小分子凝胶的构筑[D]. 无锡: 江南大学, 2018. |
LU Xiuping. Building of stimuli-responsive low molecular organic gel[D]. Wuxi: Jiangnan University, 2018. | |
90 | WANG Haoying, WANG Fangyu, DENG Pengpeng, et al. Synthesis and fluorescent thermoresponsive properties of tetraphenylethylene-labeled methylcellulose[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000497. |
91 | YUE Yiying, LUO Huiming, HAN Jingquan, et al. Assessing the effects of cellulose-inorganic nanofillers on thermo/pH-dual responsive hydrogels[J]. Applied Surface Science, 2020, 528: 146961. |
92 | Gilad DAVIDSON-ROZENFELD, STRICKER Lucas, SIMKE Julian, et al. Light-responsive arylazopyrazole-based hydrogels: their applications as shape-memory materials, self-healing matrices and controlled drug release systems[J]. Polymer Chemistry, 2019, 10(30): 4106-4115. |
93 | LI Ziyuan, Gilad DAVIDSON-ROZENFELD, Margarita VÁZQUEZ-GONZÁLEZ, et al. Multi-triggered supramolecular DNA/bipyridinium dithienylethene hydrogels driven by light, redox, and chemical stimuli for shape-memory and self-healing applications[J]. Journal of the American Chemical Society, 2018, 140(50): 17691-17701. |
94 | QIAN Chen, ASOH Taka-Aki, UYAMA Hiroshi. Sea cucumber mimicking bacterial cellulose composite hydrogel with ionic strength-sensitive mechanical adaptivity[J]. Chemical Communications, 2018, 54(80): 11320-11323. |
95 | SHI Xiangning, ZHENG Yudong, WANG Cai, et al. Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel[J]. RSC Advances, 2015, 5(52): 41820-41829. |
96 | CHEN Zhen, LIU Jing, CHEN Yujie, et al. Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1353-1366. |
97 | ZHANG Chen, ZENG Guangming, HUANG Danlian, et al. Biochar for environmental management: mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts[J]. Chemical Engineering Journal, 2019, 373: 902-922. |
98 | SINHA Vibha, CHAKMA Sumedha. Advances in the preparation of hydrogel for wastewater treatment: a concise review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103295. |
99 | BAGHERI N, MANSOUR LAKOURAJ M, HASANTABAR V, et al. Biodegradable macro-porous CMC-polyaniline hydrogel: synthesis, characterization and study of microbial elimination and sorption capacity of dyes from waste water[J]. Journal of Hazardous Materials, 2021, 403: 123631. |
100 | MITTAL Hemant, ALILI Ali AL, MORAJKAR Pranay P, et al. GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose—A versatile adsorbent for the treatment of dyes contaminated wastewater[J]. International Journal of Biological Macromolecules, 2021, 167: 1248-1261. |
101 | ZHOU Hongwei, JIN Zhaoyang, YUAN Ying, et al. Self-repairing flexible strain sensors based on nanocomposite hydrogels for whole-body monitoring[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592: 124587. |
102 | BAI Yan, ZHAO Weiwei, BI Shuaihang, et al. Preparation and application of cellulose gel in flexible supercapacitors[J]. Journal of Energy Storage, 2021, 42: 103058 |
103 | LIANG Qianqian, ZHANG Dong, JI Peng, et al. High-strength superstretchable helical bacterial cellulose fibers with a self-fiber-reinforced structure[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 1545-1554. |
104 | KIM Dabum, GWON Goomin, LEE Gangyoon, et al. Surface-enhanced Raman scattering-active AuNR array cellulose films for multi-hazard detection[J]. Journal of Hazardous Materials, 2021, 402: 123505. |
105 | HAO S W, SHAO C Y, MENG L, et al. Tannic acid-silver dual catalysis induced rapid polymerization of conductive hydrogel sensors with excellent stretchability, self-adhesion, and strain-sensitivity properties[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56509-56521. |
106 | WANG Baojun, LI Jianmin, HOU Chengyi, et al. Stable hydrogel electrolytes for flexible and submarine-use Zn-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46005-46014. |
107 | ZHANG Xiaofang, ZHAO Jiangqi, XIA Tian, et al. Hollow polypyrrole/cellulose hydrogels for high-performance flexible supercapacitors[J]. Energy Storage Materials, 2020, 31: 135-145. |
108 | ZHENG Chunxiao, LU Kaiyue, LU Ya, et al. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion[J]. Carbohydrate Polymers, 2020, 250: 116905. |
109 | ZHAO Wen, QU Xinyu, XU Qian, et al. Ultrastretchable, self-healable, and wearable epidermal sensors based on ultralong Ag nanowires composited binary-networked hydrogels[J]. Advanced Electronic Materials, 2020, 6(7): 2000267. |
110 | TONG Ruiping, CHEN Guangxue, PAN Danhong, et al. Ultrastretchable and antifreezing double-cross-linked cellulose ionic hydrogels with high strain sensitivity under a broad range of temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14256-14265. |
[1] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[2] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[3] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[4] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[5] | 王久衡, 荣鼐, 刘开伟, 韩龙, 水滔滔, 吴岩, 穆正勇, 廖徐情, 孟文佳. 水蒸气强化纤维素模板改性钙基吸附剂固碳性能及强度[J]. 化工进展, 2023, 42(6): 3217-3225. |
[6] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[7] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[8] | 唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594. |
[9] | 仉洁, 王旭东, 杨逸飞, 任玥, 陈立成. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
[10] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[11] | 王子航, 梁瑞升, 邓超和, 王佳韵. 离子凝胶复合吸附剂的制备及空气取水性能[J]. 化工进展, 2022, 41(S1): 389-396. |
[12] | 黄岳峰, 马丽莎, 张莉莉, 王志国. 木质纤维素复合生物质薄膜材料的功能化应用研究进展[J]. 化工进展, 2022, 41(9): 4840-4854. |
[13] | 边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883. |
[14] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[15] | 杨程嵛, 刘敏, 袁林, 胡璇, 陈滢. 竹基纤维素纳米纤丝交联改性后对水体中低浓度磷的吸附[J]. 化工进展, 2022, 41(9): 5074-5084. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |