1 |
袁晴棠, 殷瑞钰, 曹湘洪, 等. 面向2035的流程制造业智能化目标、特征和路径战略研究[J]. 中国工程科学, 2020, 22(3): 148-156.
|
|
YUAN Qingtang, YIN Ruiyu, CAO Xianghong, et al. Strategic research on the goals, characteristics, and paths of intelligentization of process manufacturing industry for 2035[J]. Strategic Study of CAE, 2020, 22(3): 148-156.
|
2 |
覃伟中, 谢道雄, 赵劲松. 石油化工智能制造[M]. 北京: 化学工业出版社, 2019.
|
|
QIN Weizhong, XIE Daoxiong, ZHAO Jinsong. Intelligent manufacturing of petrochemical industry[M]. Beijing: Chemical Industry Press, 2019.
|
3 |
吉旭, 党亚固, 周利, 等. 化学工业多尺度融合的智能制造模式——互联化工[J]. 化工进展, 2020, 39(8): 2927-2936.
|
|
JI Xu, DANG Yagu, ZHOU Li, et al. Interconnected chemical engineering: an intelligent manufacture mode of chemical industry emphasizing the integration of multiscale[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2927-2936.
|
4 |
TURANYI T, TOMLIN A S, PILLING M J. On the error of the quasi-steady-state approximation[J]. The Journal of Physical Chemistry, 1993, 97(1): 163-172.
|
5 |
TURÁNYI T, BÉRCES T, VAJDA S. Reaction rate analysis of complex kinetic systems[J]. International Journal of Chemical Kinetics, 1989, 21(2): 83-99.
|
6 |
Tamás TURÁNYI. Applications of sensitivity analysis to combustion chemistry[J]. Reliability Engineering & System Safety, 1997, 57(1): 41-48.
|
7 |
LU Tianfeng, Chung K LAW. A directed relation graph method for mechanism reduction[J]. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341.
|
8 |
LAM S H, GOUSSIS D A. The CSP method for simplifying kinetics[J]. International Journal of Chemical Kinetics, 1994, 26(4): 461-486.
|
9 |
FANG Zhou, QIU Tong, CHEN Bingzhen. Improvement of ethylene cracking reaction network with network flow analysis algorithm[J]. Computers & Chemical Engineering, 2016, 91: 182-194.
|
10 |
HUA Feng, FANG Zhou, QIU Tong. Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling[J]. Chinese Journal of Chemical Engineering, 2018, 26(12): 2562-2572.
|
11 |
BI Kexin, ZHANG Chen, QIU Tong. An ingenious characterization of reaction network using sub-network reconstruction[J]. Computers & Chemical Engineering, 2020, 134: 106695.
|
12 |
KOCH Ina. Petri nets—A mathematical formalism to analyze chemical reaction networks[J]. Molecular Informatics, 2010, 29(12): 838-843.
|
13 |
GAO Connie W, ALLEN Joshua W, GREEN William H, et al. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms[J]. Computer Physics Communications, 2016, 203: 212-225.
|
14 |
LIU Mengjie, DANA Alon Grinberg, JOHNSON Matthew S, et al. Reaction mechanism generator V3.0: advances in automatic mechanism generation[J]. Journal of Chemical Information and Modeling, 2021, 61(6): 2686-2696.
|
15 |
RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: description of RING[J]. Computers & Chemical Engineering, 2012, 45: 114-123.
|
16 |
RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: applications of RING[J]. Computers & Chemical Engineering, 2012, 46: 141-152.
|
17 |
TANGMUNARUNKIT Hongsuda, GOVINDAN Ramesh, JAMIN Sugih, et al. Network topology generators[J]. Computer Communication Review, 2002, 32(4): 147-159.
|
18 |
WATTS Duncan J, STROGATZ Steven H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442.
|
19 |
PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking: bringing order to the web[J]. Stanford Digital Libraries Working Paper, 1998, DOI:10.1007/978-3-319-08789-4_10 .
|
20 |
CHEN Jie, SAAD Yousef. Dense subgraph extraction with application to community detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(7): 1216-1230.
|
21 |
许江, 马艳捷, 黄剑锋, 等. 乙烯裂解装置的节能增效技术分析[J]. 能源化工, 2017, 38(1): 17-21.
|
|
XU Jiang, MA Yanjie, HUANG Jianfeng, et al. Analysis on technologies of energy saving and efficiency improvement in ethylene cracking plant[J]. Energy Chemical Industry, 2017, 38(1): 17-21.
|
22 |
纪晔, 王杭州, 蒋子龙, 等. 基于结构导向集总的分子级催化重整过程建模方法[J]. 计算机与应用化学, 2018, 35(9): 767-774.
|
|
JI Ye, WANG Hangzhou, JIANG Zilong, et al. Molecular level modeling method of catalytic reforming based on structure-oriented lumping concept[J]. Computers and Applied Chemistry, 2018, 35(9): 767-774.
|
23 |
纪晔, 王杭州, 蒋子龙, 等. 基于结构导向集总的分子级炼油过程全厂模拟和优化方法[J]. 计算机与应用化学, 2020(3): 218-225.
|
|
JI Ye, WANG Hangzhou, JIANG Zilong, et al. Modelling and optimization for the overall refinery operation based on the structure-oriented lumping concept[J]. Computers and Applied Chemistry, 2020(3): 218-225.
|
24 |
BILLA Triveni, HORTON Scott R, SAHASRABUDHE Mayuresh, et al. Enhancing the value of detailed kinetic models through the development of interrogative software applications[J]. Computers & Chemical Engineering, 2017, 106: 512-528.
|
25 |
BI Kexin, BEYKAL Burcu, AVRAAMIDOU Styliani, et al. Integrated modeling of transfer learning and intelligent heuristic optimization for steam cracking process[J]. Industrial & Engineering Chemistry Research, 2020, 59(37): 16357-16367.
|