1 |
RINALDI Roberto, JASTRZEBSKI Robin, CLOUGH Matthew T, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J]. Angewandte Chemie International Edition, 2016, 55(29): 8164-8215.
|
2 |
LIAO Yuhe, KOELEWIJN Steven-Friso, BOSSCHE Gil VAN DEN, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390.
|
3 |
ZHANG Zhanrong, SONG Jinliang, HAN Buxing. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6834-6880.
|
4 |
张兴华, 陈伦刚, 张琦, 等. 木质素基酚类化合物加氢脱氧制取碳氢燃料[J]. 化学进展, 2014, 26(12): 1997-2006.
|
|
ZHANG Xinghua, CHEN Lungang, ZHANG Qi, et al. Production of hydrocarbons via hydrodeoxygenation of lignin-derived phenolic compounds[J]. Progress in Chemistry, 2014, 26(12): 1997-2006.
|
5 |
陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 626-638.
|
|
CHEN Yu, JI Hongbing. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 626-638.
|
6 |
MEI Qingqing, SHEN Xiaojun, LIU Huizhen, et al. Selectively transform lignin into value-added chemicals[J]. Chinese Chemical Letters, 2019, 30(1): 15-24.
|
7 |
王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448.
|
|
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448.
|
8 |
LIU Rui, DAI Lin, XU Chunlin, et al. Lignin-based micro- and nanomaterials and their composites in biomedical applications[J]. ChemSusChem, 2020, 13(17): 4266-4283.
|
9 |
DONALDSON Lloyd. Autofluorescence in plants[J]. Molecules, 2020, 25(10): 2393.
|
10 |
LI Yanpeng, REN Junli, SUN Runcang, et al. Fluorescent lignin carbon dots for reversible responses to high-valence metal ions and its bioapplications[J]. Journal of Biomedical Nanotechnology, 2018, 14(9): 1543-1555.
|
11 |
MA Zhuoming, LIU Chen, NIU Na, et al. Seeking brightness from nature: J-aggregation-induced emission in cellulolytic enzyme lignin nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3169-3175.
|
12 |
XUE Yuyuan, LIANG Wanshan, LI Yuan, et al. Fluorescent pH-sensing probe based on biorefinery wood lignosulfonate and its application in human cancer cell bioimaging[J]. Journal of Agricultural and Food Chemistry, 2016, 64(51): 9592-9600.
|
13 |
NIU Na, MA Zhuoming, HE Fei, et al. Preparation of carbon dots for cellular imaging by the molecular aggregation of cellulolytic enzyme lignin[J]. Langmuir, 2017, 33(23): 5786-5795.
|
14 |
Stephen DAVIDSON R, DUNN Linda A, CASTELLAN Alain, et al. A study of the photobleaching and photoyellowing of paper containing lignin using fluorescence spectroscopy.[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 58(3): 349-359.
|
15 |
LIUKKO Sirje, TASAPURO Ville, Tiina LIITIÄ. Fluorescence spectroscopy for chromophore studies on bleached kraft pulps[J]. Holzforschung, 2007, 61(5): 509-515.
|
16 |
DONALDSON Lloyd, WILLIAMS Nari. Imaging and spectroscopy of natural fluorophores in pine needles[J]. Plants, 2018, 7(1): 10.
|
17 |
TERRYN Christine, Gabriel PAËS, SPRIET Corentin. FRET-SLiM on native autofluorescence: a fast and reliable method to study interactions between fluorescent probes and lignin in plant cell wall[J]. Plant Methods, 2018, 14(1): 74.
|
18 |
LICHTENTHALER Hartmut K, SCHWEIGER Joachim. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants[J]. Journal of Plant Physiology, 1998, 152(2/3): 272-282.
|
19 |
TOBIMATSU Yuki, DAVIDSON Christy L, GRABBER John H, et al. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification[J]. Biomacromolecules, 2011, 12(5): 1752-1761.
|
20 |
PANDEY Krishna K. Study of the effect of photo-irradiation on the surface chemistry of wood[J]. Polymer Degradation and Stability, 2005, 90(1): 9-20.
|
21 |
SUN Runcang. Lignin source and structural characterization[J]. ChemSusChem, 2020, 13(17): 4385-4393.
|
22 |
KONSCHIN Henrik, SUNDHOLM Franciska, Göran SUNDHOLM. Fluorescence characteristics of lignin model compounds. Ⅰ. Styrene derivatives[J]. Acta Chemica Scandinavica, 1976, 306: 262-266.
|
23 |
LUNDQUIST Knut, JOSEFSSON Björn, NYQUIST Gunnar. Analysis of lignin products by fluorescence spectroscopy[J]. Holzforschung, 1978, 32(1): 27-32.
|
24 |
LANG M, STOBER F, LICHTENTHALER H K. Fluorescence emission spectra of plant leaves and plant constituents[J]. Radiation and Environmental Biophysics, 1991, 30(4): 333-347.
|
25 |
BEYER M, STEGER D, FISCHER K. The luminescence of lignin-containing pulps — A comparison with the fluorescence of model compounds in several media[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 76(3): 217-224.
|
26 |
CASTELLAN Alain, CHOUDHURY Hasneen, Stephen DAVIDSON R, et al. Comparative study of stone-ground wood pulp and native wood 2. Comparison of the fluorescence of stone-ground wood pulp and native wood[J]. Journal of Photochemistry and Photobiology, A : chenisty 1994, 81(2): 117-122.
|
27 |
CASTELLAN Alain, Stephen DAVIDSON R. Steady-state and dynamic fluorescence emission from Abies wood[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 78(3): 275-279.
|
28 |
TYLLI Henrik, FORSSKAHL Ingegerd, OLKKONEN Carola. The effect of photoirradiation on high-yield pulps spectroscopy and kinetics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 87(2): 181-191.
|
29 |
ALBINSSON Bo, LI Shiming, LUNDQUIST Knut, et al. The origin of lignin fluorescence[J]. Journal of Molecular Structure, 1999, 508(1/2/3): 19-27.
|
30 |
GARDRAT Christian, RUGGIERO Reinaldo, HOAREAU William, et al. Photochemical study of an o-ethyl dibenzodioxocin molecule as a model for the photodegradation of non-phenolic lignin units of lignocellulosics[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 167(2/3): 111-120.
|
31 |
YANG Jie, CHI Zhenguo, ZHU Weihong, et al. Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen[J]. Science China-Chemistry, 2019, 62(9): 1090-1098.
|
32 |
GUAN Jianxin, WEI Rong, PRLJ Antonio, et al. Direct observation of aggregation-induced emission mechanism[J]. Angewandte Chemie International Edition, 2020, 59(35): 14903-14909.
|
33 |
MACHADO Antonio Eduardo Da Hora, DE PAULA Rodrigo, RUGGIERO Reinaldo, et al. Photophysics of dibenzodioxocins[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180(1/2): 165-174.
|
34 |
Anni LÄHDETIE, NOUSIAINEN Paula, Jussi SIPILÄ, et al. Laser-induced fluorescence (LIF) of lignin and lignin model compounds in Raman spectroscopy[J]. Holzforschung, 2013, 67(5): 531-538.
|
35 |
Ksenija RADOTIĆ, KALAUZI Aleksandar, Daniela DJIKANOVIĆ, et al. Component analysis of the fluorescence spectra of a lignin model compound[J]. Journal of Photochemistry and Photobiology B: Biology,2006, 83(1): 1-10.
|
36 |
Daniela DJIKANOVIĆ, KALAUZI Aleksandar, Milorad JEREMIĆ, et al. Deconvolution of fluorescence spectra: contribution to the structural analysis of complex molecules[J]. Colloids and Surfaces B: Biointerfaces, 2007, 54(2): 188-192.
|
37 |
Daniela DJIKANOVIĆ, Jasna SIMONOVIĆ, Aleksandar SAVIĆ, et al. Structural differences between lignin model polymers synthesized from various monomers[J]. Journal of Polymers and the Environment, 2012, 20(2): 607-617.
|
38 |
HARRIS P J, HARTLEY R D. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy[J]. Nature, 1976, 259(5543): 508-510.
|
39 |
MORALES Fermín, CEROVIC Zoran G, MOYA Ismael. Time-resolved blue-green fluorescence of sugar beet leaves. Spectroscopic evidence for the presence of ferulic acid as the main fluorophore of the epidermis[J]. Biochimica et Biophysica Acta, 1996, 1273(3): 251-262.
|
40 |
BARSBERG S, ELDER T, FELBY C. Lignin-Quinone interactions: implications for optical properties of lignin[J]. Chemistry of Materials, 2003, 15(3): 649-655.
|
41 |
Danka DIVOVIĆ, PRISTOV Jelena Bogdanović, Daniela DJIKANOVIĆ, et al. Combining electrophoretic and fluorescence method for screening fine structural variations among lignin model polymers differing in monomer composition[J]. Journal of Polymers and the Environment, 2015, 23(2): 235-241.
|
42 |
XUE Yuyuan, WAN Zechen, OUYANG Xinping, et al. Lignosulfonate: a convenient fluorescence resonance energy transfer platform for the construction of a ratiometric fluorescence pH-sensing probe[J]. Journal of Agricultural and Food Chemistry, 2019, 67(4): 1044-1051.
|
43 |
YAN Mingfang, YANG Dongjie, DENG Yonghong, et al. Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1/2/3): 50-58.
|
44 |
DENG Yonghong, FENG Xinjia, ZHOU Mingsong, et al. Investigation of aggregation and assembly of alkali lignin using iodine as a probe[J]. Biomacromolecules, 2011, 12(4): 1116-1125.
|
45 |
DENG Yonghong, FENG Xinjia, YANG Dongjie, et al. Pi-pi stacking of the aromatic groups in lignosulfonates[J]. BioResources, 2012, 7(1): 1145-1156.
|
46 |
XUE Yuyuan, QIU Xueqing, WU Ying, et al. Aggregation-induced emission: the origin of lignin fluorescence[J]. Polymer Chemistry, 2016, 7(21): 3502-3508.
|
47 |
XUE Yuyuan, QIU Xueqing, OUYANG Xinping. Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis[J]. International Journal of Biological Macromolecules, 2020, 154: 981-988.
|
48 |
DONALDSON Lloyd, Ksenija RADOTIĆ, KALAUZI Aleksandar, et al. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution[J]. Journal of Structural Biology, 2010, 169(1): 106-115.
|
49 |
DONALDSON L A, RADOTIĆ K. Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood[J]. Journal of Microscopy, 2013, 251(2): 178-187.
|
50 |
AUXENFANS Thomas, TERRYN Christine, Gabriel PAËS. Seeing biomass recalcitrance through fluorescence[J]. Scientific Reports, 2017, 7(1): 8838.
|
51 |
王瑞彬, 周雪莲, 徐婷婷, 等. 木质素基碳点和石墨烯量子点制备方法研究进展[J]. 林业工程学报, 2021, 6(1): 29-37.
|
|
WANG Ruibin, ZHOU Xuelian, XU Tingting, et al. Research progress on the preparation of lignin-derived carbon dots and graphene quantum dots[J]. Journal of Forestry Engineering, 2021, 6(1): 29-37.
|
52 |
KANG Chao, HUANG Ying, YANG Hui, et al. A review of carbon dots produced from biomass wastes[J]. Nanomaterials, 2020, 10(11): 2316.
|