化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2686-2697.DOI: 10.16085/j.issn.1000-6613.2021-0975
郭之晗1(), 徐云翔1, 李天皓1, 黄子川1, 刘文如1,2,3, 沈耀良1,2,3()
收稿日期:
2021-05-10
修回日期:
2021-07-10
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
沈耀良
作者简介:
郭之晗(1996—),男,硕士研究生, 研究方向为水污染控制与理论。E-mail:基金资助:
GUO Zhihan1(), XU Yunxiang1, LI Tianhao1, HUANG Zichuan1, LIU Wenru1,2,3, SHEN Yaoliang1,2,3()
Received:
2021-05-10
Revised:
2021-07-10
Online:
2022-05-05
Published:
2022-05-24
Contact:
SHEN Yaoliang
摘要:
好氧颗粒污泥因具有结构密实、沉降性好、耐冲击负荷的优点,在废水处理领域有着广阔的应用前景,然而颗粒成型时间长、长期运行易失稳为其推广应用的限制性因素。本文回顾了近年来国内外关于好氧颗粒污泥稳定性方面的研究进展;梳理分析了影响好氧颗粒污泥运行稳定性的因素,包括宏观角度的反应器构型、水流剪切力、有机负荷、饱食-饥饿期、进水底物、C/N比(碳氮比)、F/M比(营养微生物比),及微观角度的颗粒粒径、胞外聚合物组成、微生物生长速率、菌落结构等;列举并讨论了调整曝气、改变进料方式、添加载体颗粒、选择生长缓慢微生物等强化好氧颗粒污泥稳定性的方法途径;最后指出了好氧颗粒污泥的形成机理仍会是今后的研究重点,同时应利用基因组学工具探究微生物群感效应对颗粒稳定性的作用相关性,结合微生物生态学确定好氧颗粒污泥的最佳运行条件,以期推动该技术的应用与发展。
中图分类号:
郭之晗, 徐云翔, 李天皓, 黄子川, 刘文如, 沈耀良. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697.
GUO Zhihan, XU Yunxiang, LI Tianhao, HUANG Zichuan, LIU Wenru, SHEN Yaoliang. Research progress on long-term stable operation of aerobic granular sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2686-2697.
1 | BENGTSSON S, DE BLOIS M, WILÉN B M, et al. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies[J]. Environmental Technology, 2019, 40(21): 2769-2778. |
2 | PRONK M, DE KREUK M K, DE BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84: 207-217. |
3 | CORSINO S F, DI TRAPANI D, TORREGROSSA M, et al. Aerobic granular sludge treating high strength Citrus wastewater: analysis of pH and organic loading rate effect on kinetics, performance and stability[J]. Journal of Environmental Management, 2018, 214: 23-35. |
4 | 高景峰, 苏凯, 陈冉妮, 等. 连续进水对好氧颗粒污泥稳定维持的影响[J]. 环境科学学报, 2010, 30(7): 1377-1383. |
GAO Jingfeng, SU Kai, CHEN Ranni, et al. The effect of continuous feeding on the stability of aerobic granular sludge[J]. Acta Scientiae Circumstantiae, 2010, 30(7): 1377-1383. | |
5 | 张瑞环, 袁林江, 陈希. 污水处理运行模式对好氧颗粒污泥特性的影响[J]. 水处理技术, 2021, 47(2): 106-111. |
ZHANG Ruihuan, YUAN Linjiang, CHEN Xi. Effect of sewage treatment operation mode on characteristics of aerobic granular sludge[J]. Technology of Water Treatment, 2021, 47(2): 106-111. | |
6 | 苏海佳,王陆玺,邓爽,等. 好氧颗粒污泥技术进展[J]. 化工进展,2016, 35(6): 1914-1922. |
SU Haijia, WANG Luxi, DENG Shuang, et al. A review on the aerobic granular sludge technology[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1914-1922. | |
7 | 张远, 郑晓英, 卢丹, 等. 低高径比对好氧颗粒污泥颗粒化及其稳定性的影响[J]. 环境科技, 2019, 32(2): 1-5. |
ZHANG Yuan, ZHENG Xiaoying, LU Dan, et al. Effects of reactor low height-to-diameter ratio on the formation and stability of AGS[J]. Environmental Science and Technology, 2019, 32(2): 1-5. | |
8 | LIU Y Q, TAY J H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors[J]. Bioresource Technology, 2008, 99(5): 980-985. |
9 | WANG Fang, YANG Fenglin, ZHANG Xingwen, et al. Effects of cycle time on properties of aerobic granules in sequencing batch airlift reactors[J]. World Journal of Microbiology and Biotechnology, 2005, 21(8/9): 1379-1384. |
10 | 王海彪, 傅金祥, 唐玉兰, 等. SBR循环周期对好氧颗粒污泥结构及稳定性的影响[J]. 能源与环境, 2009(6): 7-8, 12. |
WANG Haibiao, FU Jinxiang, TANG Yulan, et al. Effect of SBR cycle on structure and stability of aerobic granular sludge[J]. Energy and Environment, 2009(6): 7-8, 12. | |
11 | LIU Yongqiang, TAY J H. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors[J]. Enzyme and Microbial Technology, 2007, 41(4): 516-522. |
12 | MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied and Environmental Microbiology, 2005, 71(2): 1051-1057. |
13 | TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 227-233. |
14 | CHEN Y, JIANG W J, LIANG D T, et al. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2007, 76(5): 1199-1208. |
15 | 王超, 郑晓英. 剪切应力对好氧颗粒污泥形态结构和微生物活性的影响机制研究[J]. 环境科学, 2008, 29(8): 2235-2241. |
WANG Chao, ZHENG Xiaoying. Effect of shear stress on morphology, structure and microbial activity of aerobic granules[J]. Environmental Science, 2008, 29(8): 2235-2241. | |
16 | TAY J H, PAN S, HE Y X, et al. Effect of organic loading rate on aerobic granulation. I: Reactor performance[J]. Journal of Environmental Engineering, 2004, 130(10): 1094-1101. |
17 | PEYONG Y N, ZHOU Y, ABDULLAH A Z, et al. The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater[J]. Biochemical Engineering Journal, 2012, 67: 52-59. |
18 | ZHANG Hanmin, DONG Feng, JIANG Tao, et al. Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor[J]. Enzyme and Microbial Technology, 2011, 49(2): 215-222. |
19 | RUSANOWSKA P, CYDZIK-KWIATKOWSKA A, ŚWIĄTCZAK P, et al. Changes in extracellular polymeric substances (EPS) content and composition in aerobic granule size-fractions during reactor cycles at different organic loads[J]. Bioresource Technology, 2019, 272: 188-193. |
20 | LIU Y Q, TAY J H. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate[J]. Water Research, 2015, 80: 256-266. |
21 | ZHENG Yuming, YU Hanqing, LIU Shuangjiang, et al. Formation and instability of aerobic granules under high organic loading conditions[J]. Chemosphere, 2006, 63(10): 1791-1800. |
22 | BEUN J J, LOOSDRECHT M C VAN, HEIJNEN J J. Aerobic granulation[J]. Water Science and Technology, 2000, 41(4/5): 41-48. |
23 | CORSINO S F, CAMPO R, BELLA G D, et al. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor[J]. Bioresource Technology, 2016, 200: 1055-1059. |
24 | IORHEMEN O T, ZAGHLOUL M S, HAMZA R A, et al. Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103681. |
25 | LÓPEZ-PALAU S, PINTO A, BASSET N, et al. ORP slope and feast-famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater[J]. Biochemical Engineering Journal, 2012, 68: 190-198. |
26 | LIU Y Q, TAY J H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors[J]. Bioresource Technology, 2008, 99(5): 980-985. |
27 | MUDA K, ARIS A, SALIM M R, et al. The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater[J]. Water Research, 2011, 45(16): 4711-4721. |
28 | LIU Xiang, SUN Supu, MA Buyun, et al. Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3747-3755. |
29 | FRANCA R D G, ORTIGUEIRA J, PINHEIRO H M, et al. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater[J]. Water Science and Technology, 2017, 76(5/6): 1188-1195. |
30 | 王芳, 杨凤林, 张兴文, 等. 好氧颗粒污泥稳定性影响因素分析[J]. 环境科学与技术, 2006, 29(1): 47-49, 81, 118. |
WANG Fang, YANG Fenglin, ZHANG Xingwen, et al. Influencing factors on stability of aerobic granules in SBAR[J]. Environmental Science & Technology, 2006, 29(1): 47-49, 81, 118. | |
31 | MOY B Y P, TAY J H, TOH S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2002, 34(6): 407-412. |
32 | 沈娜. 好氧硝化颗粒污泥的快速培养与运行稳定性的研究[D]. 武汉: 华中科技大学, 2013. |
SHEN Na. Study on the rapid cultivation and the operating stability of aerobic nitrifying granular sludge[D]. Wuhan: Huazhong University of Science and Technology, 2013. | |
33 | TAY J H, LIU Q S, LIU Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J]. Journal of Applied Microbiology, 2001, 91(1): 168-175. |
35 | KOCATURK I, ERGUDER T H. Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules[J]. Ecological Engineering, 2016, 90: 12-24. |
36 | LUO Jinghai, HAO Tianwei, WEI Li, et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62: 127-135. |
37 | 宋志伟, 徐雪冬, 张晴, 等. 碳氮比对好氧颗粒污泥稳定性的影响[J]. 环境工程学报, 2020, 14(1): 262-269. |
SONG Zhiwei, XU Xuedong, ZHANG Qing, et al. Influence of carbon-nitrogen ratio on the stability of aerobic granular sludge[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 262-269. | |
38 | 赵阳丽. 好氧颗粒污泥的形成与运行稳定性的研究[D]. 兰州: 兰州理工大学, 2012. |
ZHAO Yangli. Research on the formation and the operating stability of aerobic granular sludge[D]. Lanzhou: Lanzhou University of Technology, 2012. | |
39 | ZHANG Zhiming, YU Zhuodong, DONG Jingjing, et al. Stability of aerobic granular sludge under condition of low influent C/N ratio: Correlation of sludge property and functional microorganism[J]. Bioresource Technology, 2018, 270: 391-399. |
40 | WANG Xiaochun, CHEN Zhonglin, SHEN Jimin, et al. Impact of carbon to nitrogen ratio on the performance of aerobic granular reactor and microbial population dynamics during aerobic sludge granulation[J]. Bioresource Technology, 2019, 271: 258-265. |
41 | KIM H, KIM J, AHN D. Effects of carbon to nitrogen ratio on the performance and stability of aerobic granular sludge[J]. Environmental Engineering Research, 2021, 26(1). DOI: 10.4491/eer.2019.284 . |
42 | FRANCA R D G, PINHEIRO H M, LOOSDRECHT M C M VAN, et al. Stability of aerobic granules during long-term bioreactor operation[J]. Biotechnology Advances, 2018, 36(1): 228-246. |
43 | WU Di, ZHANG Zhiming, YU Zhuodong, et al. Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge[J]. Bioresource Technology, 2018, 252: 150-156. |
44 | KANG A J, YUAN Q Y. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads[J]. Bioresource Technology, 2017, 234: 336-342. |
45 | HAMZA R A, SHENG Z Y, IORHEMEN O T, et al. Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater[J]. Water Research, 2018, 147: 287-298. |
46 | WANG X H, ZHANG H M, YANG F L, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure[J]. Enzyme and Microbial Technology, 2007, 41(3): 205-211. |
47 | LONG Bei, XUAN Xinpeng, YANG Changzhu, et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control[J]. Chemosphere, 2019, 225: 460-469. |
48 | 闫立龙,刘玉,任源. 胞外聚合物对好氧颗粒污泥影响的研究进展[J]. 化工进展,2013, 32(11): 2744-2749. |
YAN Lilong, LIU Yu, REN Yuan. A review on the effects of extracellular polymeric substance to aerobic granular sludge[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2744-2749. | |
49 | ZHAO Ziwen, LIU Sen, YANG Xiaojing, et al. Stability and performance of algal-bacterial granular sludge in shaking photo-sequencing batch reactors with special focus on phosphorus accumulation[J]. Bioresource Technology, 2019, 280: 497-501. |
50 | 王玉莹, 支丽玲, 马鑫欣, 等. 好氧颗粒污泥胞外聚合物组分特征分析[J]. 哈尔滨工业大学学报, 2020, 52(2): 153-160. |
WANG Yuying, ZHI Liling, MA Xinxin, et al. Characterization of extracellular polymeric substances from aerobic granular sludge[J]. Journal of Harbin Institute of Technology, 2020, 52(2): 153-160. | |
51 | ZHU Liang, Meile LYU, DAI Xin, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2012, 107: 46-54. |
52 | MARTı́NEZ O F, JUAN L M, MÉNDEZ R, et al. Role of exopolymeric protein on the settleability of nitrifying sludges[J]. Bioresource Technology, 2004, 94(1): 43-48. |
53 | CORSINO S F, CAPODICI M, TORREGROSSA M, et al. Fate of aerobic granular sludge in the long-term: the role of EPSs on the clogging of granular sludge porosity[J]. Journal of Environmental Management, 2016, 183: 541-550. |
54 | LOOSDRECHT M C M VAN, POT M A, HEIJNEN J J. Importance of bacterial storage polymers in bioprocesses[J]. Water Science and Technology, 1997, 35(1): 41-47. |
55 | LIU Y, YANG S F, TAY J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. Journal of Biotechnology, 2004, 108(2): 161-169. |
56 | 侯爱月, 李军, 王昌稳, 等. 不同好氧颗粒污泥中微生物群落结构特点[J]. 中国环境科学, 2016, 36(4): 1136-1144. |
HOU Aiyue, LI Jun, WANG Changwen, et al. Characteristics of microbial community structure in different aerobic granular sludge[J]. China Environmental Science, 2016, 36(4): 1136-1144. | |
57 | 刘凤阁, 王志平, 周江亚, 等. 真菌对好氧颗粒污泥稳定性的影响[J]. 环境科学与技术, 2009, 32(5): 5-8, 13. |
LIU Fengge, WANG Zhiping, ZHOU Jiangya, et al. Effect of fungi to stability of aerobic granular sludge[J]. Environmental Science & Technology, 2009, 32(5): 5-8, 13. | |
58 | 李志华, 张婷, 吴杰, 等. 异养菌与自养菌对好氧颗粒污泥稳定性的影响[J]. 土木建筑与环境工程, 2010, 32(5): 76-81. |
LI Zhihua, ZHANG Ting, WU Jie, et al. Effects of heterotrophic and autotrophic bacteria on the stability of aerobic granular sludge[J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(5): 76-81. | |
59 | WU Luying, TANG Bing, Liying BIN, et al. Heterogeneity of the diverse aerobic sludge granules self-cultivated in a membrane bioreactor with enhanced internal circulation[J]. Bioresource Technology, 2018, 263: 297-305. |
60 | GALLOWAY W R J D, HODGKINSON J T, BOWDEN S D, et al. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways[J]. Chemical Reviews, 2011, 111(1): 28-67. |
61 | 李松亚, 费学宁, 焦秀梅, 等. 废水处理中群体感应调控行为研究进展[J]. 应用生态学报, 2018, 29(3): 1015-1022. |
LI Songya, FEI Xuening, JIAO Xiumei, et al. Progress on the regulation of quorum sensing in wastewater treatment[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 1015-1022. | |
62 | DOBRETSOV S, TEPLITSKI M, PAUL V. Mini-review: quorum sensing in the marine environment and its relationship to biofouling[J]. Biofouling, 2009, 25(5): 413-427. |
63 | FENG Huajun, DING Yangcheng, WANG Meizhen, et al. Where are signal molecules likely to be located in anaerobic granular sludge?[J]. Water Research, 2014, 50: 1-9. |
64 | POLKE M, JACOBSEN I D. Quorum sensing by farnesol revisited[J]. Current Genetics, 2017, 63(5): 791-797. |
65 | CHEN Han, LI Ang, CUI Chongwei, et al. AHL-mediated quorum sensing regulates the variations of microbial community and sludge properties of aerobic granular sludge under low organic loading[J]. Environment International, 2019, 130: 104946. |
66 | GIRARD L, LANTOINE F, LAMI R, et al. Genetic diversity and phenotypic plasticity of AHL-mediated quorum sensing in environmental strains of Vibrio mediterranei [J]. The ISME Journal, 2019, 13: 159-169. |
67 | 张智明. 好氧污泥颗粒化和结构稳定化过程中微生物群体感应作用机制研究[D]. 杭州: 浙江大学, 2020. |
ZHANG Zhiming. The mechanism of microbial quorum sensing during the process of aerobic sludge granulation and stabilization[D]. Hangzhou: Zhejiang University, 2020. | |
68 | LI Anjie, HOU Baolian, LI Meixi. Cell adhesion, ammonia removal and granulation of autotrophic nitrifying sludge facilitated by N-acyl-homoserine lactones[J]. Bioresource Technology, 2015, 196: 550-558. |
69 | 宋志伟, 邓文静, 郑欢, 等. 外源AHLs信号分子对好氧颗粒污泥稳定性的影响[J]. 黑龙江科技大学学报, 2021, 31(3): 354-359. |
SONG Zhiwei, DENG Wenjing, ZHENG Huan, et al. Effect of exogenous AHLs signaling molecules on stability of aerobic granular sludge[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(3): 354-359. | |
70 | LIU Xiang, SUN Supu, MA Buyun, et al. Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3747-3755. |
71 | SUN Supu, LIU Xiang, MA Buyun, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 2016, 201: 58-64. |
72 | ZHANG Zhiming, CAO Runjuan, JIN Luonan, et al. The regulation of N-acyl-homoserine lactones (AHLs)-based quorum sensing on EPS secretion via ATP synthetic for the stability of aerobic granular sludge[J]. Science of the Total Environment, 2019, 673: 83-91. |
73 | Junping LYU, WANG Yaqin, ZHONG Chen, et al. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge[J]. Bioresource Technology, 2014, 152: 53-58. |
74 | LI Yaochen, ZHU Jianrong. Role of N-acyl homoserine lactone (AHL)-based quorum sensing (QS) in aerobic sludge granulation[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7623-7632. |
75 | 胡远超. 外加AHLs和活性污泥对解体好氧颗粒污泥修复过程的影响[D]. 济南: 山东大学, 2019. |
HU Yuanchao. Effects of exogenous AHLs and activated sludge on the repair process of disintegrated aerobic granular sludge[D]. Jinan: Shandong University, 2019. | |
76 | LIU Y Q, TAY J H. Variable aeration in sequencing batch reactor with aerobic granular sludge[J]. Journal of Biotechnology, 2006, 124(2): 338-346. |
77 | LIU Y Q, TAY J H, MOY B Y P. Characteristics of aerobic granular sludge in a sequencing batch reactor with variable aeration[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 761-766. |
78 | ZHANG Zhiming, YU Zhuodong, ZHU Liang, et al. Gradient reduced aeration in an enhanced aerobic granular sludge process optimizes the dominant microbial community and its function[J]. Environmental Science: Water Research & Technology, 2018, 4(5): 680-688. |
79 | CHEN Guangpeng, Liying BIN, TANG Bing, et al. Rapid reformation of larger aerobic granular sludge in an internal-circulation membrane bioreactor after long-term operation: effect of short-time aeration[J]. Bioresource Technology, 2019, 273: 462-467. |
80 | YUAN Quan, GONG Hui, XI Hao, et al. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate[J]. Journal of Environmental Sciences, 2019, 84: 144-154. |
81 | IORHEMEN O T, ZAGHLOUL M S, HAMZA R A, et al. Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103681. |
82 | IORHEMEN O T, LIU Y. Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge[J]. Journal of Water Process Engineering, 2021, 39: 101709. |
83 | CARRERA P, CAMPO R, MÉNDEZ R, et al. Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents?[J]. Chemosphere, 2019, 226: 865-873. |
84 | THWAITES B J, REEVE P, DINESH N, et al. Comparison of an anaerobic feed and split anaerobic-aerobic feed on granular sludge development, performance and ecology[J]. Chemosphere, 2017, 172: 408-417. |
85 | LIN Huihua, MA Rui, HU Yaping, et al. Reviewing bottlenecks in aerobic granular sludge technology: slow granulation and low granular stability[J]. Environmental Pollution, 2020, 263: 114638. |
86 | 魏燕杰, 季民, 李国一, 等. 投加粉末活性炭强化好氧颗粒污泥的稳定性[J]. 天津大学学报, 2012, 45(3): 247-253. |
WEI Yanjie, JI Min, LI Guoyi, et al. Enhancement of stability of aerobic granules by powdered activated carbon addition[J]. Journal of Tianjin University, 2012, 45(3): 247-253. | |
87 | 梁梓轩, 涂倩倩, 苏晓轩, 等. 不同强化类型的好氧颗粒污泥结构特性[J]. 土木与环境工程学报, 2019, 41(6): 167-173. |
LIANG Zixuan, TU Qianqian, SU Xiaoxuan, et al. Structural characteristics of different enhanced aerobic granules[J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 167-173. | |
88 | LI Anjie, LI Xiaoyan, YU Hanqing. Granular activated carbon for aerobic sludge granulation in a bioreactor with a low-strength wastewater influent[J]. Separation and Purification Technology, 2011, 80(2): 276-283. |
89 | LIANG Zixuan, TU Qianqian, SU Xiaoxuan, et al. Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon[J]. Environmental Science and Pollution Research International, 2019, 26(6): 6123-6132. |
90 | LI Jun, LIU Jun, WANG Danjun, et al. Accelerating aerobic sludge granulation by adding dry sewage sludge micropowder in sequencing batch reactors[J]. International Journal of Environmental Research and Public Health, 2015, 12(8): 10056-10065. |
91 | LIANG Xueyou, GAO Baoyu, NI Shouqing. Effects of magnetic nanoparticles on aerobic granulation process[J]. Bioresource Technology, 2017, 227: 44-49. |
92 | LONG Bei, YANG Changzhu, PU Wenhong, et al. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor[J]. Bioresource Technology, 2014, 166: 57-63. |
93 | 孙寓姣, 左剑恶, 杨洋, 等. 好氧亚硝化颗粒污泥中硝化细菌群落结构分析[J]. 环境科学, 2006, 27(9): 1858-1861. |
SUN Yujiao, ZUO Jian’e, YANG Yang, et al. Community structure of nitrification bacteria in aerobic short-cut nitrification granule[J]. Environmental Science, 2006, 27(9): 1858-1861. | |
94 | XIA Liping, ZHANG Hanmin, WANG Xinhua. An effective way to select slow-growing nitrifying bacteria by providing a dynamic environment[J]. Bioprocess and Biosystems Engineering, 2007, 30(6): 383-388. |
95 | WANG X H, ZHANG H M, YANG F L, et al. Improved stability and performance of aerobic granules under stepwise increased selection pressure[J]. Enzyme and Microbial Technology, 2007, 41(3): 205-211. |
96 | DE KREUK M K, LOOSDRECHT M C M VAN. Selection of slow growing organisms as a means for improving aerobic granular sludge stability[J]. Water Science and Technology, 2004, 49(11/12): 9-17. |
97 | SHENG Guoping, LI Anjie, LI Xiaoyan, et al. Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation[J]. Chemical Engineering Journal, 2010, 160(1): 108-114. |
98 | ZHANG Cuiya, ZHANG Hanmin, YANG Fenglin. Diameter control and stability maintenance of aerobic granular sludge in an A/O/A SBR[J]. Separation and Purification Technology, 2015, 149: 362-369. |
99 | LIU Yu, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563. |
100 | TOH S, TAY J, MOY B, et al. Size-effect on the physical characteristics of the aerobic granule in a SBR[J]. Applied Microbiology and Biotechnology, 2003, 60(6): 687-695. |
101 | LIU Yu, WANG Zhiwu, QIN Lei, et al. Selection pressure-driven aerobic granulation in a sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2005, 67(1): 26-32. |
102 | FAROOQI I H, BASHEER F. Treatment of adsorbable organic halide (AOX) from pulp and paper industry wastewater using aerobic granules in pilot scale SBR[J]. Journal of Water Process Engineering, 2017, 19: 60-66. |
103 | ZHANG Hanmin, DONG Feng, JIANG Tao, et al. Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor[J]. Enzyme and Microbial Technology, 2011, 49(2): 215-222. |
104 | ZHOU Jiaheng, ZHANG Zhiming, ZHAO Hang, et al. Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress[J]. Bioresource Technology, 2016, 216: 562-570. |
105 | FENG Hongbo, YANG Honggang, SHENG Jianlong, et al. A bioreactor designed for restricting oversize of aerobic granular sludge[J]. Processes, 2021, 9(2): 374. |
106 | LONG Bei, XUAN Xinpeng, YANG Changzhu, et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control[J]. Chemosphere, 2019, 225: 460-469. |
107 | CAO Runjuan, JI Yatong, HAN Taixing, et al. The stability of aerobic granular sludge under low energy consumption: optimization of the granular size distribution by a novel internal component[J]. Environmental Science: Water Research & Technology, 2021, 7: 1125-1136. |
[1] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[2] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[3] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[4] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[5] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[6] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[7] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[8] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[9] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[10] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[11] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
[12] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[13] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[14] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
[15] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |