化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1136-1151.DOI: 10.16085/j.issn.1000-6613.2021-1909
邵斌(), 孙哲毅(), 章云, 潘冯弘康, 赵开庆, 胡军(), 刘洪来
收稿日期:
2021-09-07
修回日期:
2021-10-19
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
胡军
作者简介:
邵斌(1996—),男,博士研究生,研究方向为二氧化碳捕集与转化。E-mail:基金资助:
SHAO Bin(), SUN Zheyi(), ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun(), LIU Honglai
Received:
2021-09-07
Revised:
2021-10-19
Online:
2022-03-23
Published:
2022-03-28
Contact:
HU Jun
摘要:
由于二氧化碳(CO2)过度排放导致全球变暖日益严峻,发展零碳技术已成为人类社会面向可持续发展的战略选择。将CO2捕集并转化为高附加值化学和能源产品,可以优化化石能源为主体的能源结构、有效缓解环境问题,并实现碳资源的充分利用,是一项可以大规模实现低碳减排的技术。本文重点介绍了CO2高效利用新途径,通过二氧化碳-合成气-高附加值化学品的产品工艺路线,实现CO2的资源化利用。对比综述了热催化法、电催化法和光催化法高效转化合成气的最新进展,总结了热、电、光催化制备合成气过程中催化剂的设计原理和方法以及目前工业化应用前景;简单概述了合成气作为重要平台分子,进一步通过费托合成路线或接力催化路线转化为低碳烯烃和液态燃料或芳烃等化学品过程中催化剂设计研究进展。最后,总结了大规模工业化CO2转化为合成气及高附加值产品过程催化剂设计和反应器优化的技术难题,并对未来CO2高效转化利用方向进行了展望。同时指出目前各技术还普遍存在反应机理不清晰、催化剂成本高以及缺乏大规模合成等问题,未来开发出高效、高活性、低成本且稳定的催化剂是各技术推广应用的关键。
中图分类号:
邵斌, 孙哲毅, 章云, 潘冯弘康, 赵开庆, 胡军, 刘洪来. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151.
SHAO Bin, SUN Zheyi, ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun, LIU Honglai. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151.
1 | FIGUERES C, LE QUÉRÉ C, MAHINDRA A, et al. Emissions are still rising: ramp up the cuts[J]. Nature, 2018, 564(7734): 27-30. |
2 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
3 | GAO P, LI S G, BU X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9(10): 1019-1024. |
4 | ZHANG Z E, PAN S Y, LI H, et al. Recent advances in carbon dioxide utilization[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109799. |
5 | MA J, SUN N N, ZHANG X L, et al. A short review of catalysis for CO2 conversion[J]. Catalysis Today, 2009, 148(3-4): 221-231. |
6 | 周伟, 成康, 张庆红, 等. 合成气转化中的接力催化[J]. 科学通报, 2021, 66(10): 1157-1169. |
ZHOU Wei, CHENG Kang, ZHANG Qinghong, et al. Relay catalysis in the conversion of syngas[J]. Chinese Science Bulletin, 2021, 66(10): 1157-1169. | |
7 | KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21): 3556-3575. |
8 | PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-7837. |
9 | YABE T, SEKINE Y. Methane conversion using carbon dioxide as an oxidizing agent: a review[J]. Fuel Processing Technology, 2018, 181: 187-198. |
10 | ZUO Z J, LIU S Z, WANG Z C, et al. Dry reforming of methane on single-site Ni/MgO catalysts: importance of site confinement[J]. ACS Catalysis, 2018, 8(10): 9821-9835. |
11 | ASHCROFT A T, CHEETHAM A K, GREEN M L H, et al. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature, 1991, 352(6332): 225-226. |
12 | THEOFANIDIS S A, GALVITA V V, POELMAN H, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
13 | 阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857. |
RUAN Yongzhe, LU Yao, WANG Shengping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methanedry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3850-3857. | |
14 | 张涛, 刘志成, 杨为民. 低碳烷烃与二氧化碳催化转化研究进展[J]. 中国科学: 化学, 2021, 51(2): 154-164. |
ZHANG Tao, LIU Zhicheng, YANG Weimin. Progress in the catalytic conversion of light alkanes with carbon dioxide[J]. Scientia Sinica (Chimica), 2021, 51(2): 154-164. | |
15 | KATHIRASER Y, OEMAR U, SAW E T, et al. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts[J]. Chemical Engineering Journal, 2015, 278: 62-78. |
16 | ZHU Y A, CHEN D, ZHOU X G, et al. DFT studies of dry reforming of methane on Ni catalyst[J]. Catalysis Today, 2009, 148(3/4): 260-267. |
17 | FAN C, ZHU Y A, YANG M L, et al. Density functional theory-assisted microkinetic analysis of methane dry reforming on Ni catalyst[J]. Industrial & Engineering Chemistry Research, 2015, 54(22): 5901-5913. |
18 | FOPPA L, SILAGHI M C, LARMIER K, et al. Intrinsic reactivity of Ni, Pd and Pt surfaces in dry reforming and competitive reactions: insights from first principles calculations and microkinetic modeling simulations[J]. Journal of Catalysis, 2016, 343: 196-207. |
19 | ZHANG X, DENG J, PUPUCEVSKI M, et al. High-performance binary Mo-Ni catalysts for efficient carbon removal during carbon dioxide reforming of methane[J]. ACS Catalysis, 2021, 11(19): 12087-12095. |
20 | KIM J H, SUH D J, PARK T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Applied Catalysis A: General, 2000, 197(2): 191-200. |
21 | AKRI M, ZHAO S, LI X Y, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10: 5181. |
22 | SONG Y, OZDEMIR E, RAMESH S, et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science, 2020, 367(6479): 777-781. |
23 | KIM S M, ABDALA P M, MARGOSSIAN T, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. Journal of the American Chemical Society, 2017, 139(5): 1937-1949. |
24 | KAISER P, UNDE R, KERN C, et al. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer-Tropsch synthesis[J]. Chemie Ingenieur Technik, 2013, 85(4): 489-499. |
25 | SU X, YANG X L, ZHAO B, et al. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions[J]. Journal of Energy Chemistry, 2017, 26(5): 854-867. |
26 | BAHMANPOUR A M, SIGNORILE M, KRÖCHER O. Recent progress in syngas production via catalytic CO2 hydrogenation reaction[J]. Applied Catalysis B: Environmental, 2021, 295: 120319. |
27 | WANG X, SHI H, KWAK J H, et al. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: kinetics and transient DRIFTS-MS studies[J]. ACS Catalysis, 2015, 5(11): 6337-6349. |
28 | BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, et al. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Applied Catalysis B: Environmental, 2020, 266: 118669. |
29 | JUNEAU M, VONGLIS M, HARTVIGSEN J, et al. Assessing the viability of K-Mo2C for reverse water-gas shift scale-up: molecular to laboratory to pilot scale[J]. Energy & Environmental Science, 2020, 13(8): 2524-2539. |
30 | SHAO B, HU G H, ALKEBSI K A M, et al. Heterojunction-redox catalysts of Fe x Co y Mg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing[J]. Energy & Environmental Science, 2021, 14(4): 2291-2301. |
31 | 陈倩倩, 顾宇, 唐志永, 等. 以二氧化碳规模化利用技术为核心的碳减排方案[J]. 中国科学院院刊, 2019, 34(4): 478-487. |
CHEN Qianqian, GU Yu, TANG Zhiyong, et al. Carbon dioxide sizable utilization technology based carbon reduction solutions[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 478-487. | |
32 | Green Car Congress. Carbon sciences licenses catalyst technology for carbon dioxide reforming of methane from University of Saskatchewan[EB/OL]. . |
33 | CHEN Q J, ZHANG J, PAN B R, et al. Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane[J]. Chemical Engineering Journal, 2017, 320: 63-73. |
34 | Shanghai Advanced Research Institute of Chinese Academy of Science. Methane and carbon dioxide autothermal reforming to produce tens of thousands of Nm3 syngas pilot-scale plant achieves stable operation [EB/OL]. 2017. . |
35 | WU H, LIU J X, LIU H M, et al. CO2 reforming of methane to syngas at high pressure over bi-component Ni-Co catalyst: the anti-carbon deposition and stability of catalyst[J]. Fuel, 2019, 235: 868-877. |
36 | REZAEI E, DZURYK S. Techno-economic comparison of reverse water gas shift reaction to steam and dry methane reforming reactions for syngas production[J]. Chemical Engineering Research and Design, 2019, 144: 354-369. |
37 | 葛欣. 逆水煤气变换耦合乙烷脱氢高选择性制备乙烯反应的研究进展[J]. 化工进展, 2010, 29(10): 1811-1816. |
GE Xin. Coupling of ethane dehydrogenation with reversed water-gas shift reaction for ethylene synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(10): 1811-1816. | |
38 | CHENG Y, ZHAO S Y, JOHANNESSEN B, et al. Atomically dispersed transition metals on carbon nanotubes with ultrahigh loading for selective electrochemical carbon dioxide reduction[J]. Advanced Materials, 2018, 30(13): 1706287. |
39 | LIU S G, HUANG S P. Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction[J]. Applied Surface Science, 2019, 475: 20-27. |
40 | ZHU W, MICHALSKY R, METIN Ö, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013, 135(45): 16833-16836. |
41 | ZHANG H N, LI J, XI S B, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 58(42): 14871-14876. |
42 | GONG Y N, JIAO L, QIAN Y Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(7): 2705-2709. |
43 | WANG X Q, CHEN Z, ZHAO X Y, et al. Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2 [J]. Angewandte Chemie International Edition, 2018, 57(7): 1944-1948. |
44 | QIN X P, ZHU S Q, XIAO F, et al. Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction[J]. ACS Energy Letters, 2019, 4(7): 1778-1783. |
45 | GUO W W, BI J H, ZHU Q G, et al. Highly selective CO2 electroreduction to CO on Cu-Co bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12561-12567. |
46 | HE Q, LIU D B, LEE J H, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(8): 3033-3037. |
47 | REN W H, TAN X, YANG W F, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(21): 6972-6976. |
48 | LU Z Y, WANG B, HU Y F, et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angewandte Chemie International Edition, 2019, 58(9): 2622-2626. |
49 | XIANG H, RASUL S, HOU B, et al. Copper-indium binary catalyst on a gas diffusion electrode for high-performance CO2 electrochemical reduction with record CO production efficiency[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 601-608. |
50 | JIANG K, SIAHROSTAMI S, ZHENG T T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11(4): 893-903. |
51 | LU S S, SHI Y M, MENG N N, et al. Electrosynthesis of syngas via the co-reduction of CO2 and H2O[J]. Cell Reports Physical Science, 2020, 1(11): 100237. |
52 | JIN S, HAO Z M, ZHANG K, et al. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization[J]. Angewandte Chemie International Edition, 2021, 60(38): 20627-20648. |
53 | JOUNY M, LUC W W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2165-2177. |
54 | NAVARRO R M, PEÑA M A, FIERRO J L. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass[J]. Chemical Reviews, 2007, 107(10): 3952-3991. |
55 | LEE S, CHOI M, LEE J. Looking back and looking ahead in electrochemical reduction of CO2 [J]. The Chemical Record, 2020, 20(2): 89-101. |
56 | VERMA S, LU S, KENIS P J A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption[J]. Nature Energy, 2019, 4(6): 466-474. |
57 | BAI S, JIANG J, ZHANG Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations[J]. Chemical Society Reviews, 2015, 44(10): 2893-2939. |
58 | HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408. |
59 | LUO S H, ZENG Z T, ZENG G M, et al. Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects[J]. Journal of Materials Chemistry A, 2020, 8(14): 6434-6470. |
60 | YU X X, YANG Z Z, QIU B, et al. Eosin Y-functionalized conjugated organic polymers for visible-light-driven CO2 reduction with H2O to CO with high efficiency[J]. Angewandte Chemie International Edition, 2019, 58(2): 632-636. |
61 | LI D D, KASSYMOVA M, CAI X C, et al. Photocatalytic CO2 reduction over metal-organic framework-based materials[J]. Coordination Chemistry Reviews, 2020, 412: 213262. |
62 | DONG H, ZHANG X, LU Y, et al. Regulation of metal ions in smart metal-cluster nodes of metal-organic frameworks with open metal sites for improved photocatalytic CO2 reduction reaction[J]. Applied Catalysis B: Environmental, 2020, 276: 119173. |
63 | LU M, LIU J, LI Q, et al. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O[J]. Angewandte Chemie International Edition, 2019, 58(36): 12392-12397. |
64 | ZHONG W F, SA R J, LI L Y, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO[J]. Journal of the American Chemical Society, 2019, 141(18): 7615-7621. |
65 | HE Y J, CHEN X, HUANG C, et al. Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas[J]. Chinese Journal of Catalysis, 2021, 42(1): 123-130. |
66 | QIU C H, BAI S, CAO W J, et al. Tunable syngas synthesis from photocatalytic CO2 reduction under visible-light irradiation by interfacial engineering[J]. Transactions of Tianjin University, 2020, 26(5): 352-361. |
67 | CHEN C, HU J D, YANG X G, et al. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20162-20173. |
68 | WANG X, WANG Z L, BAI Y, et al. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600nm[J]. Journal of Energy Chemistry, 2020, 46: 1-7. |
69 | YANG J, WANG Z Y, JIANG J C, et al. In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas[J]. Nano Energy, 2020, 76: 105059. |
70 | WANG X W, CHEN J F, LI Q Y, et al. Light-driven syngas production over defective ZnIn2S4 nanosheets[J]. Chemistry: A European Journal, 2021, 27(11): 3786-3792. |
71 | YANG P J, SHANG L, ZHAO J H, et al. Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light[J]. Applied Catalysis B: Environmental, 2021, 297: 120496. |
72 | ZHOU W, CHENG K, KANG J C, et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
73 | PAN X L, JIAO F, MIAO D Y, et al. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chemical Reviews, 2021, 121(11): 6588-6609. |
74 | BILOEN P, SACHTLER W M H. Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts[J]. Advances in Catalysis, 1981, 30: 165-216. |
75 | SANTEN R A VAN, GHOURI M M, SHETTY S, et al. Structure sensitivity of the Fischer-Tropsch reaction; molecular kinetics simulations[J]. Catalysis Science & Technology, 2011, 1(6): 891. |
76 | SANTEN R A VAN, MARKVOORT A J, FILOT I A W, et al. Mechanism and microkinetics of the Fischer-Tropsch reaction[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17038. |
77 | FRIEDEL R A, ANDERSON R B. Composition of synthetic liquid fuels (I): product distribution and analysis of C5—C8 paraffin isomers from cobalt catalyst[J]. Journal of the American Chemical Society, 1950, 72(3): 1212-1215. |
78 | PUSKAS I, HURLBUT R S. Comments about the causes of deviations from the Anderson-Schulz-Flory distribution of the Fischer-Tropsch reaction products[J]. Catalysis Today, 2003, 84(1/2): 99-109. |
79 | ZHONG L S, YU F, AN Y L, et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
80 | XU Y F, LI X Y, GAO J H, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
81 | ZHAI P, XU C, GAO R, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie, 2016, 128(34): 10056-10061. |
82 | JIAO F, LI J J, PAN X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
83 | 新华社. 大连化物所煤制烯烃新技术成功完成工业试验[EB/OL]. 2019-09-20. |
Xinhua News Agency. Dalian Institute of Chemical Physicshas successfully completed the industrial test of the new coal to olefin technology[EB/OL]. 2019-09-20. . | |
84 | DING Y, JIAO F, PAN X L, et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catalysis, 2021, 11(15): 9729-9737. |
85 | CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie, 2016, 128(15): 4803-4806. |
86 | LIU X L, ZHOU W, YANG Y D, et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chemical Science, 2018, 9(20): 4708-4718. |
87 | JAVED M, CHENG S L, ZHANG G H, et al. A facile solvent-free synthesis strategy for Co-imbedded zeolite-based Fischer-Tropsch catalysts for direct gasoline production[J]. Chinese Journal of Catalysis, 2020, 41(4): 604-612. |
88 | LI N, JIAO F, PAN X L, et al. High-quality gasoline directly from syngas by dual metal oxide-zeolite (OX-ZEO) catalysis[J]. Angewandte Chemie International Edition, 2019, 58(22): 7400-7404. |
89 | NI Y M, WANG K Y, ZHU W L, et al. Realizing high conversion of syngas to gasoline-range liquid hydrocarbons on a dual-bed-mode catalyst[J]. Chem Catalysis, 2021, 1(2): 383-392. |
90 | KANG J C, HE S, ZHOU W, et al. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis[J]. Nature Communications, 2020, 11: 827. |
91 | ZHOU W, SHI S L, WANG Y, et al. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem, 2019, 11(6): 1681-1688. |
92 | MIAO D Y, DING Y, YU T, et al. Selective synthesis of benzene, toluene, and xylenes from syngas[J]. ACS Catalysis, 2020, 10(13): 7389-7397. |
93 | ZHAO B, ZHAI P, WANG P F, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333. |
94 | CHENG K, ZHOU W, KANG J C, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem, 2017, 3(2): 334-347. |
95 | LIU C, SU J J, XIAO Y, et al. Constructing directional component distribution in a bifunctional catalyst to boost the tandem reaction of syngas conversion[J]. Chem Catalysis, 2021, 1(4): 896-907. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[9] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[10] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[11] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |