化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1136-1151.DOI: 10.16085/j.issn.1000-6613.2021-1909

• 二氧化碳的捕集、封存及利用 • 上一篇    下一篇

二氧化碳转化为合成气及高附加值产品的研究进展

邵斌(), 孙哲毅(), 章云, 潘冯弘康, 赵开庆, 胡军(), 刘洪来   

  1. 华东理工大学化学与分子工程学院,上海 200237
  • 收稿日期:2021-09-07 修回日期:2021-10-19 出版日期:2022-03-23 发布日期:2022-03-28
  • 通讯作者: 胡军
  • 作者简介:邵斌(1996—),男,博士研究生,研究方向为二氧化碳捕集与转化。E-mail:shaobin_88@163.com|孙哲毅(1997—),男,硕士研究生,研究方向为合成气制低碳烯烃。E-mail:zheyisun@163.com
  • 基金资助:
    国家自然科学基金(91834301);上海市科技创新计划(19160712100)

Recent progresses in CO2 to syngas and high value-added products

SHAO Bin(), SUN Zheyi(), ZHANG Yun, PAN Fenghongkang, ZHAO Kaiqing, HU Jun(), LIU Honglai   

  1. School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2021-09-07 Revised:2021-10-19 Online:2022-03-23 Published:2022-03-28
  • Contact: HU Jun

摘要:

由于二氧化碳(CO2)过度排放导致全球变暖日益严峻,发展零碳技术已成为人类社会面向可持续发展的战略选择。将CO2捕集并转化为高附加值化学和能源产品,可以优化化石能源为主体的能源结构、有效缓解环境问题,并实现碳资源的充分利用,是一项可以大规模实现低碳减排的技术。本文重点介绍了CO2高效利用新途径,通过二氧化碳-合成气-高附加值化学品的产品工艺路线,实现CO2的资源化利用。对比综述了热催化法、电催化法和光催化法高效转化合成气的最新进展,总结了热、电、光催化制备合成气过程中催化剂的设计原理和方法以及目前工业化应用前景;简单概述了合成气作为重要平台分子,进一步通过费托合成路线或接力催化路线转化为低碳烯烃和液态燃料或芳烃等化学品过程中催化剂设计研究进展。最后,总结了大规模工业化CO2转化为合成气及高附加值产品过程催化剂设计和反应器优化的技术难题,并对未来CO2高效转化利用方向进行了展望。同时指出目前各技术还普遍存在反应机理不清晰、催化剂成本高以及缺乏大规模合成等问题,未来开发出高效、高活性、低成本且稳定的催化剂是各技术推广应用的关键。

关键词: 二氧化碳, 合成气, 催化机理, 催化剂, 工业应用

Abstract:

The global warming caused by excess carbon dioxide (CO2) emission has been a worldwide focus. The development of carbon neutralization technologies is a strategic choice for the sustainability of human society. CO2 capture and conversion to high value-added chemicals is an ultimate technology for the goal of carbon neutralization, which can optimize the fossil fuel-dominated energy structure, effectively alleviate environmental problems, and achieve carbon recycling. This paper focuses on the efficient CO2 utilization by the route of CO2-syngas-high value-added chemicals. As an important intermedia product, syngas is the most feasible for CO2 conversion and can be further transformed into value-added chemicals. Recent progresses in three CO2 to syngas technologies of thermo-catalysis, electrocatalysis and photocatalysis are reviewed, including the mechanism, catalysts design strategies, and the current industrial application prospects. Moreover, the conversion of syngas to light olefins and aromatics through the Fischer-Tropsch synthesis and relay catalytic routes are also reviewed. By analyzing and comparing the key technologies, we summarize the challenges of catalyst design and reactor optimization for the large-scale industrial applications of CO2 to syngas and further to high value-added products, and proposed the prospects of CO2 capture and utilization. At the same time, the problems of unclear reaction mechanism, high cost of catalysts and lack of large-scale producing are explained. The effort to promote application of the technologies in the future is to develop low-cost and long-life catalyst with high activity and efficiency.

Key words: carbon dioxide, syngas, catalytic mechanism, catalyst, industrial application

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn