1 |
李娜, 陈建宏. 2013—2019年我国危险化学品统计分析[J]. 应用化工, 2020, 49(5): 1261-1265.
|
|
LI Na, CHEN Jianhong. Statistical analysis of hazardous chemicals in China from 2013 to 2019[J]. Applied Chemical Industry, 2020, 49(5): 1261-1265.
|
2 |
中国化学品安全协会. 2019年危险化学品典型事故反思[EB/OL]. [2020-04-25]. .
|
|
China Chemical Safety Association. Reflection on typical accidents of hazardous chemicals in 2019[EB/OL]. .
|
3 |
张怀水. 我国化工产值占全球的40%重大事故连续8年下降[EB/OL]. [2019-09-18]. .
|
|
ZHANG Huaishui. China's chemical output accounts for 40% of the world's total, and major accidents have declined for eight consecutive years[EB/OL]. [2019-09-18]. .
|
4 |
孙玉波, 王连军. 化学恐怖威胁防护谱系初探[M]. 北京: 化学工业出版社, 2013: 6-12.
|
|
SUN Yubo, WANG Lianjun. Preliminary study on the protection spectrum of chemical terrorism threat[M]. Beijing: Chemical Industry Press, 2013: 6-12.
|
5 |
文上贤. 超级恐怖主义简介[J]. 核生化防护半年刊, 2005(80): 14-25.
|
|
WEN Shangxian. Introduction to super terrorism[J]. Semi Annual Journal of Nuclear, Chemical and Biological Defense, 2005(80): 14-25.
|
6 |
慈颖, 王思, 王林, 等. 一种新型泡沫洗消剂对化学毒剂的洗消效果评价[J]. 中国国境卫生检疫杂志, 2017, 40(1): 39-42.
|
|
Ying CI, WANG Si, WANG Lin, et al. Decontamination effect of a novel foam decontaminant on chemical toxants[J]. Chinese Frontier Health Quarantine, 2017, 40(1): 39-42.
|
7 |
聂志勇, 孙海鹏, 孙晓红, 等. 化学应急洗消技术及装备研究进展[J]. 军事医学, 2016, 40(4): 267-271.
|
|
NIE Zhiyong, SUN Haipeng, SUN Xiaohong, et al. Emergency decontamination technology and equipment against chemical agents: research advances[J]. Military Medical Science, 2016, 40(4): 267-271.
|
8 |
GEBREMEDHIN Mulu, FENTABIL Messele, COCHRANE Laura, et al. In vitro decontamination efficacy of the RSDL® (reactive skin decontamination lotion kit) lotion component against riot control agents: capsaicin, MaceTM (CN) and CS[J]. Toxicology Letters, 2020(332): 36-41.
|
9 |
习海玲, 赵三平, 周文. 基于过氧化物的消毒技术研究进展[J]. 环境科学, 2013, 34(5): 1645-1652.
|
|
XI Hailing, ZHAO Sanping, ZHOU Wen. Advances in peroxide-based decontaminating technologies[J]. Environmental Science, 2013, 34(5): 1645-1652.
|
10 |
STONE Harry, David SEE, SMILEY Autumn, et al. Surface decontamination for blister agents Lewisite, sulfur mustard and agent yellow, a Lewisite and sulfur mustard mixture[J]. Journal of Hazardous Materials, 2016, 314: 59-66.
|
11 |
KOSKELA Harri. Structural characterization of chemical warfare agent degradation products in decontamination solutions with proton band-selective 1H-31P NMR spectroscopy[J]. Analytical Chemistry, 2010, 82(12): 5331-5340.
|
12 |
贡玉凤. 溶解性有机物对Cr(Ⅵ)的去除及Cr(Ⅵ)催化氧化苯酚机制的研究[D]. 天津: 天津工业大学, 2015.
|
|
GONG Yufeng. Removal of Cr(Ⅵ) by dissolved organic matter and mechanism of catalytic oxidation of phenol by Cr(Ⅵ)[D]. Tianjin: Tianjin University of Technology, 2015.
|
13 |
SREEJA P H, SOSAMONY K J. A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment[J]. Procedia Technology, 2016, 24: 217-223.
|
14 |
ASAITHAMBI P, ALEMAYEHU E, SAJJADI B, et al. Electrical energy per order determination for the removal pollutant from industrial wastewater using UV/Fe2+/H2O2 process: optimization by response surface methodology[J]. Water Resources and Industry, 2017, 18: 17-32.
|
15 |
WANG L, CAO M, AI Z, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5): 30-32.
|
16 |
WANG J, LIU C, HUSSAIN I, et al. Iron-copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: the effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye[J]. RSC Advances, 2016, 6(59): 54623-54635.
|
17 |
GUO S, ZHANG G, YU J. Enhanced photo-Fenton degradatio of rhodamine B using grapheneoxide-amorphous FePO4 as effective and stable heterogeneous catalyst[J]. Journal of Colloid and Interface Science, 2015, 448: 460-466.
|
18 |
宋佳秀, 李玲, 盛凡凡, 等.驯化污泥厌氧还原脱氯促进2, 4, 6-三氯酚矿化及胞外呼吸脱氯途径[J]. 环境科学, 2015, 36: 3764-3770.
|
|
SONG Jiaxiu, LI Ling, SHENG Fanfan, et al. 2,4,6-Trichlorophenol mineralization promoted by anaerobic reductive dechlorination of acclimated sludge and extracellular respiration dechlorination pathway[J]. Environmental Science, 2015, 36: 3764-3770.
|
19 |
WU D, CHEN Y, ZHANG Z, et al. Enhanced oxidation of chloramphenicol by GLDA-driven pyrite induced heterogeneous Fenton-like reactions at alkaline condition[J].Chemical Engineering Journal, 2016, 294: 49-57.
|
20 |
REN L, LU S Y, FANG J Z, et al. Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst[J]. Catalysis Today, 2017, 281: 656-661.
|
21 |
张磊, 习海玲, 王琦, 等. 过碳酸钠/钼酸钠体系对2-氯乙基乙基硫醚的消毒机理与动力学研究[J]. 环境化学, 2011, 30(10): 1695-1699.
|
|
ZHANG Lei, XI Hailing, WANG Qi, al et, Kinetics and mechanism of the degradation reaction of2-chlororthyl ethyl sulfide by sodium percarbonate/ sodium molybdate[J]. Environmental Chemistry, 2011, 30(10): 1695-1699.
|
22 |
ZHANG A Y, LIN T, HE Y Y, et al. Heterogeneous activation of H2O2 by defect-engineered TiO2-x single crystals for refractory pollutants degradation: a Fenton-like mechanism[J]. Journal of Hazardous Materials, 2016, 311: 81.
|
23 |
唐俊玲. 双氧水漂白催化活化剂的制备及其在棉织物中的应用[D]. 西安: 西安工程大学, 2016.
|
|
TANG Junling. Preparation of hydrogen peroxide bleaching catalyst and its application in cotton fabrics[D]. Xi'an: Xi'an Engineering University, 2016.
|
24 |
WANG F F, WU Y, GAO Y, et al. Effect of humic acid, oxalate and phosphate on Fenton-like oxidation of microcystin-LR by nanoscale zero-valent iron[J]. Separation & Purification Technology, 2016, 170: 337-343.
|
25 |
LIM S, LEE J J, HINKS D, et al. Bleaching of cotton with activated peroxide systems[J]. Coloration Technology, 2005, 121: 89-95.
|
26 |
NESTLER B. Use of formamidinium salts as bleach: US6028047[P]. 2000-02-22.
|
27 |
王阔, 刘凯, 阎克路. 棉织物的低温活化漂白工艺及机理[J]. 印染, 2017, 43(3): 23-26.
|
|
WANG Kuo, LIU Kai, YAN Kelu. Low-temperature activated bleaching processes and mechanism of cotton fabric[J]. China Dyeing & Finishing, 2017, 43(3): 23-26.
|
28 |
LIU Kai, ZHANG Xuan, YAN Kelu. Low-temperature bleaching of cotton knitting fabric with H2O2/PAG system[J]. Cellulose, 2017(24): 1555-1561.
|
29 |
李志刚, 高丽贤, 戴鸽. 羊绒纤维双氧水/NOBS活化体系低温漂白工艺[J]. 印染助剂, 2020, 37(7): 57-59.
|
|
LI Zhigang, GAO Lixian, DAI Ge. Low temperature bleaching of cashmere fiber with hydrogen peroxide/NOBS activation system[J]. Textile Auxiliaries, 2020, 37(7): 57-59.
|
30 |
何铠君, 洪钰莹, 沈加加, 等. 羊绒纤维的H2O2/NOBS活化体系低温漂白[J]. 印染, 2019, 45(4): 1-4, 15.
|
|
HE Kaijun, HONG Yuying, SHEN Jiajia, et al. Application of H2O2/NOBS activation system to low temperature bleaching process of cashmere fiber[J]. China Dyeing & Finishing, 2019, 45(4): 1-4, 15.
|
31 |
CAI J Y, EVANS D J. Guanidine derivatives used as peroxide activators for bleaching cellulosic textiles[J]. Coloration Technology, 2007, 123: 115-118.
|
32 |
安刚, 曹机良, 王柯钦. 活化剂乙酰胍在棉织物冷轧堆漂白中的应用[J].印染, 2013, 39(13): 10-13.
|
|
AN Gang, CAO Jiliang, WANG Keqin. Application of acetylguanidine as an activator to cold pad-batch bleaching of cotton fabric[J]. China Dyeing & Finishing, 2013, 39(13): 10-13.
|
33 |
王壮, 王雪燕, 李钰颖, 等. 双氧水低温漂白促进剂研究进展[J]. 染整技术, 2020, 42(4): 9-16.
|
|
WANG Zhuang, WANG Xueyan, LI Yuying, et al. Overview of hydrogen peroxide low temperature bleaching accelerator[J]. Textile Dyeing and Finishing Journal, 2020, 42(4): 9-16.
|
34 |
QI Lihong, ZUO Guomin, CHENG Zhenxing, et al. Treatment of chemical warfare agents by combined sodium percarbonate with tetraacetylethylenediamine solution[J]. Chemical Engineering Journal, 2013, 229: 197-205.
|