化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 411-425.DOI: 10.16085/j.issn.1000-6613.2021-0416
收稿日期:
2021-03-02
修回日期:
2021-03-27
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
王永杰,杨雪晶
作者简介:
钱媛媛(1988—),女,博士,研究方向工业水强化处理技术、零排放与水处理碳中和系统。E-mail:基金资助:
QIAN Yuanyuan1,2(), WANG Yongjie1,3(), YANG Xuejing1,3()
Received:
2021-03-02
Revised:
2021-03-27
Online:
2021-10-25
Published:
2021-11-09
Contact:
WANG Yongjie,YANG Xuejing
摘要:
通过对臭氧的性质和不同的反应机理介绍,回顾了臭氧在水处理中的应用发展概况,并介绍了臭氧在实际处理应用中的设备的3个关键部分,包括臭氧发生器、臭氧接触反应系统和臭氧破坏装置。在工艺设计、活化及催化方法开发的基础上,臭氧在水中传质过程的优化也是技术创新的重要环节,所以本文阐述了臭氧的传质速率影响因素,而臭氧接触器是改善传质的具体工程手段。基于人们对臭氧传质过程的理解,逐渐对臭氧接触器进行了设计和改进,本文对几种典型类型的接触器的发展历程和研究现状进行了介绍,并且对其各自的传质特征研究进行对比与总结,结果得出大流量工况下静态混合器的体积传质系数KLa高达2s-1,而小流量工况下射流式接触器和微气泡反应器的KLa可分别达到216.15s-1和4000s-1,并且发现臭氧反应中仍有某些问题需要进一步研究,如气泡直径等参数可以多加注意和臭氧体系中的界面反应的进一步研究。
中图分类号:
钱媛媛, 王永杰, 杨雪晶. 臭氧相关水处理工艺及其传质特征研究进展[J]. 化工进展, 2021, 40(S1): 411-425.
QIAN Yuanyuan, WANG Yongjie, YANG Xuejing. Application of ozone for water treatment and implication of mass transfer characteristics[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 411-425.
类型 | 适用工况 | 体积传质系数 | 参考文献 |
---|---|---|---|
鼓泡扩散式接触器、曝气池 | 大流量 | 0.016~0.030s-1 | [ |
静态混合器 | 大流量 | 0.01~2s-1 | [ |
射流式接触器 | 小流量 | 0.3~0.47s-1,气液速度比很高时可以达到216.15s-1 | [ |
多孔膜接触器 | 小流量 | 可达到0.005s-1 | [ |
臭氧微气泡反应器 | 大、小流量 | 0.05~0.5s-1,中试规模最高可以达到4000s-1 | [ |
表1 接触器性能和特点对比
类型 | 适用工况 | 体积传质系数 | 参考文献 |
---|---|---|---|
鼓泡扩散式接触器、曝气池 | 大流量 | 0.016~0.030s-1 | [ |
静态混合器 | 大流量 | 0.01~2s-1 | [ |
射流式接触器 | 小流量 | 0.3~0.47s-1,气液速度比很高时可以达到216.15s-1 | [ |
多孔膜接触器 | 小流量 | 可达到0.005s-1 | [ |
臭氧微气泡反应器 | 大、小流量 | 0.05~0.5s-1,中试规模最高可以达到4000s-1 | [ |
1 | SONNTAG C VON, GUNTEN U VON. Ozone chemistry in water and wastewater treatment: basic principles and applications[M]. Beijing: China Construction Industry Press, 2016: 3-4. |
2 | 朱佳, 王劲松. 废水臭氧接触反应装置的传质过程[J]. 环境保护, 1999, 27(9): 14-16. |
ZHU Jia, WANG Jinsong. Mass transfer process in ozone contact of wastewater[J]. Environmental Protection, 1999, 27(9): 14-16. | |
3 | 中华人民共和国建设部. 室外给水设计规范[M]. 北京: 中国计划出版社, 2006: 62-63. |
Ministry of Construction of the People's Republic of China. Code for design of outdoor water supply engineering[M]. Beijing: China Planning Press, 2006: 62-63. | |
4 | KASPRZYK-HORDERN B, ZIÓŁEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental, 2003, 46(4): 639-669. |
5 | 牟洁. 臭氧氧化技术在水处理中的应用研究[J]. 环境与发展, 2018, 30(1): 81-82. |
MOU Jie. Application of ozone oxidation technology in water treatment[J]. Environment and Development, 2018, 30(1): 81-82. | |
6 | 王军芳, 朱世云, 程鼎, 等. 臭氧氧化法处理染料废水技术进展[J]. 工业水处理, 2008, 28(6): 8-11. |
WANG Junfang, ZHU Shiyun, CHENG Ding, et al. Advances in the treatment of dye wastewater by ozonation[J]. Industrial Water Treatment, 2008, 28(6): 8-11. | |
7 | 程素娥, 张宏, 储金宇, 等. KS型矿泉水臭氧灭菌处理设备的组成及特点[J]. 食品工业科技, 1996, 17(4): 44-45. |
CHENG Su'e, ZHANG Hong, CHU Jinyu, et al. Composition and characteristics of KS type ozone sterilization equipment for mineral water[J]. Science and Technology of Food Industry, 1996, 17(4): 44-45. | |
8 | 惠海涛. 臭氧氧化技术在水处理中的应用进展[J]. 工业用水与废水, 2019, 50(2): 6-9. |
HUI Haitao. Application progress of ozone oxidation technology in water treatment[J]. Industrial Water & Wastewater, 2019, 50 (2): 6-9. | |
9 | GLAZE W H, KANG J W, CHAPIN D H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone: Science & Engineering, 1987, 9(4): 335-352. |
10 | RIED A, MIELCKE J, WIELAND A. The potential use of ozone in municipal wastewater[J]. Ozone: Science & Engineering, 2009, 31(6): 415-421. |
11 | 魏林生, 张磊. 中国臭氧技术发展历程[EB/OL]. (2018-12-10). . |
WEI Linsheng, ZHANG Lei. Development of ozone technology in China[EB/OL]. (2018-12-10). . | |
12 | 同林科技. 国际知名的臭氧发生器企业简介[EB/OL]. (2020-03-23). . |
Tonglin Technology. Brief introduction of international famous ozone generator enterprises [EB/OL]. (2020-03-23). . | |
13 | 黄年龙, 廖凤京, 冯霞. 给水厂深度处理工艺中的臭氧系统设计[J]. 中国给水排水, 2003, 19(9): 76-78. |
HUANG Nianlong, LIAO Fengjing, FENG Xia. Design of ozone system in advanced treatment process of water supply plant[J]. China Water & Wastewater, 2003, 19(9): 76-78. | |
14 | 国家标准化管理委员会, 国家市场监督管理总局. 臭氧消毒器卫生要求: [S]. 北京: 中国标准出版社, 2020. |
Standardization Administration of the People’s Republic of China, State of Administration for Market Regulation. Hygienic requirements for ozone disinfector: [S]. Beijing: Standards Press of China, 2020. | |
15 | 秦月娇, 焦纬洲, 杨鹏飞, 等. 强化臭氧传质的研究进展[J]. 过程工程学报, 2017, 17(2): 420-426. |
QIN Yuejiao, JIAO Weizhou, YANG Pengfei, et al. Research progress of enhancement of ozone mass transfer[J]. The Chinese Journal of Process Engineering, 2017, 17(2): 420-426. | |
16 | 赵丽红, 聂飞. 水处理高级氧化技术研究进展[J]. 科学技术与工程, 2019, 19(10): 1-9. |
ZHAO Lihong, NIE Fei. Research progress in advanced oxidation technology for water treatment[J]. Science Technology and Engineering, 2019, 19 (10): 1-9. | |
17 | 范红娟, 黄肖容, 隋贤栋. 催化臭氧化在水处理中的应用[J]. 环境保护科学, 2009, 35(2): 40-42. |
FAN Hongjuan, HUANG Xiaorong, SUI Xiandong. Application of catalytic ozonation in water treatment[J]. Environmental Protection Science, 2009, 35(2): 40-42. | |
18 | 李志平, 左原, 许继龙, 等. 难降解工业有机废水臭氧催化氧化催化剂研究进展[J]. 工业催化, 2020, 28(5): 8-13. |
LI Zhiping, ZUO Yuan, XU Jilong, et al. The research progress on ozonation catalysts for catalytic degradation of biorefractory industrial organic wastewater[J]. Industrial Catalysis, 2020, 28(5): 8-13. | |
19 | RICHARDS D A, FLEISCHMAN M. Ozone transfer to aqueous systems in a static mixer[C]//Proceedings of the Second International Symposium on Ozone Technology, Montreal: 1975: 57-70. |
20 | 陈英, 张浩, 钟理, 等. 苯酚的O3/H2O2化学氧化反应动力学研究[J]. 化学反应工程与工艺, 2001, 17(1): 55-60. |
CHEN Ying, ZHANG Hao, ZHONG Li, et al. The reaction kinetics of phenol chemical oxidation by the O3/H2O2 process[J]. Chemical Reaction Engineering and Technology, 2001, 17(1): 55-60. | |
21 | 钟理, 陈建军, 张浩. 臭氧氧化降解苯酚的动力学研究[J]. 中国给水排水, 2002, 18(9): 8-11. |
ZHONG Li, CHEN Jianjun, ZHANG Hao. Study on the kinetics of phenol degradation by ozonization[J]. China Water & Wastewater, 2002, 18(9): 8-11. | |
22 | 郭瑾珑. 曝气两相流中氧传质的研究[D]. 西安: 西安理工大学, 2000. |
GUO Jinlong. Study on the oxygen transfer of the aeration two-phase flow[D]. Xi'an: Xi'an University of Technology, 2000. | |
23 | SUNDARARAJAN A, JU L K. Biological oxygen transfer enhancement in wastewater treatment systems[J]. Water Environment Research, 1995, 67(5): 848-854. |
24 | COCKX A, DO-QUANG Z, LINÉ A, et al. Use of computational fluid dynamics for simulating hydrodynamics and mass transfer in industrial ozonation towers[J]. Chemical Engineering Science, 1999, 54(21): 5085-5090. |
25 | 缪佳, 李继, 张金松, 等. CFD在臭氧接触系统优化中的应用[J]. 中国给水排水, 2006, 22(10): 46-49. |
MIAO Jia, LI Ji, ZHANG Jinsong, et al. Application of computational fluid dynamics to optimization of ozone contactor[J]. China Water & Wastewater, 2006, 22(10): 46-49. | |
26 | ZHANG J P, HUCK P M, ANDERSON W B, et al. A computational fluid dynamics based integrated disinfection design approach for improvement of full-scale ozone contactor performance[J]. Ozone: Science & Engineering, 2007, 29(6): 451-460. |
27 | WOLS B A, HOFMAN J A M H, UIJTTEWAAL W S J, et al. Evaluation of different disinfection calculation methods using CFD[J]. Environmental Modelling & Software, 2010, 25(4): 573-582. |
28 | 王蒙, 孙楠, 王颖, 等. 曝气池中气液两相流速度场分布的实验研究与数值模拟[J]. 水利学报, 2016, 47(10): 1322-1331. |
Wang Meng, SUN NAN, WANG Ying, et al. Experimental research and numerical simulation on gas-liquid two-phase flow of bubble velocity distribution in aeration tank[J]. Journal of Hydraulic Engineering, 2016, 47(10): 1322-1331. | |
29 | HWANG Y, MATSUO T, HANAKI K, et al. Removal of odorous compounds in wastewater by using activated carbon, ozonation and aerated biofilter[J]. Water Research, 1994, 28(11): 2309-2319. |
30 | SCOTT J P, OLLIS D F. Integration of chemical and biological oxidation processes for water treatment: Ⅱ. Recent illustrations and experiences[J]. Journal of Advanced Oxidation Technologies, 1997, 2(3): 374-381. |
31 | 汪晓军, 陈思莉, 顾晓扬, 等. 混凝-Fenton-BAF深度处理垃圾渗滤液中试研究[J]. 环境工程学报, 2007, 1(10): 42-45. |
WANG Xiaojun, CHEN Sili, GU Xiaoyang, et al. Pilot study on intensive treatment of landfill leachate by flocculation-Fenton-biological aerated filter process[J]. Chinese Journal of Environmental Engineering, 2007, 1(10): 42-45. | |
32 | 王开演, 汪晓军, 刘剑玉. 臭氧预氧化-BAF工艺深度处理垃圾渗滤液[J]. 环境工程学报, 2009, 3(9): 1563-1566. |
WANG Kaiyan, WANG Xiaojun, LIU Jianyu. Treatment of landfill leachate by ozonation-biological aerated filter process[J]. Chinese Journal of Environmental Engineering, 2009, 3(9): 1563-1566. | |
33 | HE Y Z, WANG X J, XU J L, et al. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents[J]. Bioresource Technology, 2013, 133: 150-157. |
34 | FU Z M, ZHANG Y G, WANG X J. Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter[J]. Bioresource Technology, 2011, 102(4): 3748-3753. |
35 | ZHANG S H, ZHENG J, CHEN Z Q. Combination of ozonation and biological aerated filter (BAF) for bio-treated coking wastewater[J]. Separation and Purification Technology, 2014, 132: 610-615. |
36 | MARIÑAS B J, LIANG S, AIETA E M. Modeling hydrodynamics and ozone residual distribution in a pilot-scale ozone bubble-diffuser contactor[J]. Journal AWWA, 1993, 85(3): 90-99. |
37 | SMITH D W, ZHOU H D. Theoretical analysis of ozone disinfection performance in a bubble column[J]. Ozone: Science & Engineering, 1994, 16(5): 429-441. |
38 | KIM J H, TOMIAK R B, MARIÑAS B J. Inactivation of cryptosporidium oocysts in a pilot-scale ozone bubble-diffuser contactor. Ⅰ: model development[J]. Journal of Environmental Engineering, 2002, 128(6): 514-521. |
39 | KIM J H, RENNECKER J L, TOMIAK R B, et al. Inactivation of cryptosporidium oocysts in a pilot-scale ozone bubble-diffuser contactor. Ⅱ: model validation and application[J]. Journal of Environmental Engineering, 2002, 128(6): 522-532. |
40 | EL-DIN M G, SMITH D W. Maximizing the enhanced ozone oxidation of kraft pulp mill effluents in an impinging-jet bubble column[J]. Ozone: Science & Engineering, 2001, 23(6): 479-493. |
41 | EL-DIN M G, SMITH D W. Mass transfer analysis in ozone bubble columns[J]. Journal of Environmental Engineering, 2003, 2: 63-76. |
42 | BAAWAIN M S, EL-DIN M G, SMITH D W. Artificial neural networks modeling of ozone bubble columns: mass transfer coefficient, gas hold-up, and bubble size[J]. Ozone: Science & Engineering, 2007, 29(5): 343-352. |
43 | BESAGNI G, INZOLI F. Comprehensive experimental investigation of counter-current bubble column hydrodynamics: holdup, flow regime transition, bubble size distributions and local flow properties[J]. Chemical Engineering Science, 2016, 146: 259-290. |
44 | BIŃ A K, DUCZMAL B, MACHNIEWSKI P. Hydrodynamics and ozone mass transfer in a tall bubble column[J]. Chemical Engineering Science, 2001, 56(21): 6233-6240. |
45 | KONSOWA A H. Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor[J]. Desalination, 2003, 158(1): 233-240. |
46 | KONSOWA A H, OSSMAN M E, CHEN Y S, et al. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 181-185. |
47 | LACKEY L W, MINES R O, MCCREANOR P T. McCreanor. Ozonation of acid yellow 17 dye in a semi-batch bubble column[J]. Journal of Hazardous Materials, 2006, 138(2): 357-362. |
48 | HUBER M M, GÖBEL A, JOSS A, et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study[J]. Environmental Science & Technology, 2005, 39(11): 4290-4299. |
49 | COLINDRES P, YEE-MADEIRA H, REGUERA E. Removal of reactive black 5 from aqueous solution by ozone for water reuse in textile dyeing processes[J]. Desalination, 2010, 258(1/2/3): 154-158. |
50 | LUCAS M S, PERES J A, LI PUMA G. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics[J]. Separation and Purification Technology, 2010, 72(3): 235-241. |
51 | SHAN C, XU Y, HUA M, et al. Mesoporous Ce-Ti-Zr ternary oxide millispheres for efficient catalytic ozonation in bubble column[J]. Chemical Engineering Journal, 2018, 338: 261-270. |
52 | KANTARCI N, BORAK F, ULGEN K O. Bubble column reactors[J]. Process Biochemistry, 2005, 40(7): 2263-2283. |
53 | HOBBS D M, SWANSON P D, MUZZIO F J. Numerical characterization of low Reynolds number flow in the Kenics static mixer[J]. Chemical Engineering Science, 1998, 53(8): 1565-1584. |
54 | FANG J Z, LEE D J. Micromixing efficiency in static mixer[J]. Chemical Engineering Science, 2001, 56(12): 3797-3802. |
55 | 吴剑华, 张春梅, 金丹, 等. SK型静态混合器湍流性能的实验研究[J]. 过程工程学报, 2008, 8(4): 714-718. |
WU Jianhua, ZHANG Chunmei, JIN Dan, et al. Experimental study on turbulence properties in a kenics static mixer[J]. Journal of Process Engineering, 2008, 8(4): 714-718. | |
56 | MENG H B, WANG F, YU Y F, et al. A numerical study of mixing performance of high-viscosity fluid in novel static mixers with multitwisted leaves[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 4084-4095. |
57 | ZIDOUNI F, KREPPER E, RZEHAK R, et al. Simulation of gas-liquid flow in a helical static mixer[J]. Chemical Engineering Science, 2015, 137: 476-486. |
58 | MARTIN N, GALEY C. Use of static mixer for oxidation and disinfection by ozone[J]. Ozone: Science & Engineering, 1994, 16(6): 455-473. |
59 | HEYOUNI A, ROUSTAN M, DO-QUANG Z. Hydrodynamics and mass transfer in gas-liquid flow through static mixers[J]. Chemical Engineering Science, 2002, 57(16): 3325-3333. |
60 | CRAIK S A, SMITH D W, CHANDRAKANTH M, et al. Effect of turbulent gas-liquid contact in a static mixer on Cryptosporidium parvum oocyst inactivation by ozone[J]. Water Research, 2003, 37(15): 3622-3631. |
61 | KUMAR V, SHIRKE V, NIGAM K D P. Performance of kenics static mixer over a wide range of Reynolds number[J]. Chemical Engineering Journal, 2008, 139(2): 284-295. |
62 | MUNTER R. Comparison of mass transfer efficiency and energy consumption in static mixers[J]. Ozone: Science & Engineering, 2010, 32(6): 399-407. |
63 | 赵枫, 吴璨, 崔政伟. 静态螺旋切割强化臭氧液相传质研究[J]. 水处理技术, 2019, 45(2): 97-101. |
ZHAO Feng, WU Can, CUI Zhengwei. Study on enhancing ozone mass transfer in liquid phase by static spiral cutting[J]. Technology of Water Treatment, 2019, 45 (2): 97-101. | |
64 | WANG H, SIKORA P, RUTGERSSON C, et al. Differential removal of human pathogenic viruses from sewage by conventional and ozone treatments[J]. International Journal of Hygiene and Environmental Health, 2018, 221(3): 479-488. |
65 | BOWMAN R, MCNEILLY M, APPLEBURY T, et al. Process and apparatus for oxidation of contaminants in water: US5851407 [P]. 1998-12-22. |
66 | TIZAOUI C, ZHANG Y M. The modelling of ozone mass transfer in static mixers using Back Flow Cell Model[J]. Chemical Engineering Journal, 2010, 162(2): 557-564. |
67 | ROUSTAN M, LINÉ A, WABLE O. Modeling of vertical downward gas-liquid flow for the design of a new contactor[J]. Chemical Engineering Science, 1992, 47(13/14): 3681-3688. |
68 | MA X, HONG D Z, HUANG R J, et al. Gas holdup and volumetric liquid phase mass transfer coefficients in a downjet loop reactor[J]. The Chemical Engineering Journal, 1992, 49(1): 49-54. |
69 | WRIGHT P C, MEEYOO V, SOH W K. A study of ozone mass transfer in a cocurrent downflow jet pump contactor[J]. Ozone: Science & Engineering, 1998, 20(1): 17-33. |
70 | JAKUBOWSKI C A, ATKINSON B W, DENNIS P, et al. Ozone mass transfer in a confined plunging liquid jet contractor[J]. Ozone: Science & Engineering, 2003, 25(1): 1-12. |
71 | JAKUBOWSKI C A, ATKINSON B W, DENNIS P, et al. Ozone mass transfer in the mixing zone of a confined plunging liquid jet contactor[J]. Ozone: Science & Engineering, 2006, 28(3): 131-140. |
72 | 李尤. 臭氧气液射流传质技术的研究[D]. 大连: 大连理工大学, 2010. |
LI You. The research of the technology of mass transfer with jet pump on ozone gas and liquid[D]. Dalian, China: Dalian University of Technology, 2010. | |
73 | BAAWAIN M S, EL-DIN M G, SMITH D W, et al. Hydrodynamic characterization and mass transfer analysis of an in-line multi-jets ozone contactor[J]. Ozone: Science & Engineering, 2011, 33(6): 449-462. |
74 | UNGER D R, MUZZIO F J, BRODKEY R S. Experimental and numerical characterization of viscous flow and mixing in an impinging jet contactor[J]. The Canadian Journal of Chemical Engineering, 1998, 76(3): 546-555. |
75 | PATHAPATI, MAZZEI, JACKSON, et al. Optimization of mixing and mass transfer in in-line multi-jet ozone contactors using computational fluid dynamics[J]. Ozone: Science & Engineering, 2016, 38(4): 245-252. |
76 | CRESPO J G, BÖDDEKER K W. Membrane processes in separation and purification[M]. Netherlands: Springer, 1994: 375-394. |
77 | GABELMAN A, HWANG S T. Hollow fiber membrane contactors[J]. Journal of Membrane Science, 1999, 159(1/2) : 61-106. |
78 | GABELMAN A, HWANG S T. Experimental results versus model predictions for dense gas extraction using a hollow fiber membrane contactor[J]. The Journal of Supercritical Fluids, 2005, 35(1): 26-39. |
79 | PHATTARANAWIK J, LEIKNES T, PRONK W. Mass transfer studies in flat-sheet membrane contactor with ozonation[J]. Journal of Membrane Science, 2004, 247(1): 153-167. |
80 | 夏强. 膜反应器中难降解有机污染物的臭氧化研究[D]. 武汉: 武汉大学, 2005. |
XIA Qiang. Study of biorefractory of ozonation in a membrane reactor[D]. Wuhan: Wuhan University, 2005. | |
81 | PINES D S, MIN K N, ERGAS S J, et al. Investigation of an ozone membrane contactor system[J]. Ozone: Science & Engineering, 2005, 27(3): 209-217. |
82 | MAVROUDI M, KALDIS S P, SAKELLAROPOULOS G P. A study of mass transfer resistance in membrane gas-liquid contacting processes[J]. Journal of Membrane Science, 2006, 272(1/2): 103-115. |
83 | WANG K L, CUSSLER E L. Baffled membrane modules made with hollow fiber fabric[J]. Journal of Membrane Science, 1993, 85(3): 265-278. |
84 | ZHANG G L, CUSSLER E L. Hollow fibers as structured distillation packing[J]. Journal of Membrane Science, 2003, 215(1/2): 185-193. |
85 | CHUNG J B, DEROCHER J P, CUSSLER E L. Distillation with nanoporous or coated hollow fibers[J]. Journal of Membrane Science, 2005, 257(1/2): 3-10. |
86 | MATSUDA N, SAKAI K, YAMAMOTO K I, et al. Effects of hollow fiber packing fraction on blood flow pattern and gas transfer rate of an intravascular oxygenator (IVOX)[J]. Journal of Membrane Science, 2000, 179(1/2): 231-241. |
87 | ATCHARIYAWUT S, FENG C S, WANG R, et al. Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers[J]. Journal of Membrane Science, 2006, 285(1/2): 272-281. |
88 | SABELFELD M, GEIßEN S U. Effect of helical structure on ozone mass transfer in a hollow fiber membrane contactor[J]. Journal of Membrane Science, 2019, 574: 222-234. |
89 | JANKNECHT P, WILDERER P A, PICARD C, et al. Ozone-water contacting by ceramic membranes[J]. Separation and Purification Technology, 2001, 25(1): 341-346. |
90 | KUKUZAKI M, FUJIMOTO K, KAI S, et al. Ozone mass transfer in an ozone-water contacting process with Shirasu porous glass (SPG) membranes—a comparative study of hydrophilic and hydrophobic membranes[J]. Separation and Purification Technology, 2010, 72(3): 347-356. |
91 | IKEURA H, KOBAYASHI F, TAMAKI M. Removal of residual pesticides in vegetables using ozone microbubbles[J]. Journal of Hazardous Materials, 2011, 186(1): 956-959. |
92 | FKOBAYASHI F, IKEURA H, OHSATO S, et al. Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f.sp. melonis and Pectobacterium carotovorum subsp. carotovorum[J]. Crop Protection, 2011, 30(11): 1514-1518. |
93 | BREDWELL M D, WORDEN R M. Mass-transfer properties of microbubbles. 1. Experimental studies[J]. Biotechnology Progress, 1998, 14(1): 31-38. |
94 | SUMIKURA M, HIDAKA M, MURAKAMI H, et al. Ozone micro-bubble disinfection method for wastewater reuse system[J]. Water Science and Technology, 2007, 56(5): 53-61. |
95 | CHU L B, XING X H, YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. |
96 | CHU L B, XING X H, YU A F, et al. Enhanced treatment of practical textile wastewater by microbubble ozonation[J]. Process Safety and Environmental Protection, 2008, 86(5): 389-393. |
97 | KHUNTIA S, MAJUMDER S K, GHOSH P. Removal of ammonia from water by ozone microbubbles[J]. Industrial & Engineering Chemistry Research, 2013, 52(1): 318-326. |
98 | KHUNTIA S, MAJUMDER S K, GHOSH P. Oxidation of As(Ⅲ) to As(Ⅴ) using ozone microbubbles[J]. Chemosphere, 2014, 97: 120-124. |
99 | 史丽芳, 王越, 李攀. 微纳米气泡曝气提升臭氧/生物活性炭工艺的处理效能[J]. 中国给水排水, 2018, 34(19): 1-5. |
SHI Lifang, WANG Yue, LI Pan. Improvement of treatment efficiency of ozonation-biological activated carbon process by microbubble aeration technology [J]. China Water & Wastewater, 2018, 34 (19): 1-5. | |
100 | BANDO Y, YOSHIMATSU T, LUO W J, et al. Flow characteristics in cocurrent upflow bubble column dispersed with micro-bubbles[J]. Journal of Chemical Engineering of Japan, 2008, 41(7): 562-567. |
101 | LI P, TAKAHASHI M, CHIBA K. Degradation of phenol by the collapse of microbubbles[J]. Chemosphere, 2009, 75(10): 1371-1375. |
102 | TAKAHASHI M, ISHIKAWA H, ASANO T, et al. Effect of microbubbles on ozonized water for photoresist removal[J]. The Journal of Physical Chemistry C, 2012, 116(23): 12578-12583. |
103 | KHUNTIA S, MAJUMDER S K, GHOSH P. Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles[J]. Chemical Engineering Research and Design, 2015, 98: 231-239. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[4] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[5] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[6] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[9] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[10] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[11] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[12] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[13] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[14] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[15] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |