1 |
FATEMEH G, MAHMOUD S, SEYED M M D, et al. Naphthalene remediation form groundwater by calcium peroxide (CaO2) nanoparticles in permeable reactive barrier (PRB) [J]. Chemosphere, 2018, 212: 105-113.
|
2 |
LIU Chuanping, LUO Chunling, XU Xianghua, et al. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L. ) grown in arsenic contaminated soil [J]. Chemosphere, 2012, 86(11): 1106-1111.
|
3 |
NORTHUP A, CASSIDY D. Calcium peroxide (CaO2) for use in modified Fenton chemistry [J]. Journal of Hazardous Materials, 2008, 152(3): 1164-1170.
|
4 |
ZHANG Ai, WANG Jie, LI Yongmei. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization [J]. Water Research, 2015, 71: 125-139.
|
5 |
CHEN Zhan, ZHANG Weijun, WANG Dongsheng, et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation [J]. Water Research, 2016, 103: 170-181.
|
6 |
WU Boran, CHAI Xiaoli. Novel insights into enhanced dewatering of waste activated sludge based on the durable and efficacious radical generating [J]. Journal of the Air & Waste Management Association, 2016, 66(11): 1151-1163.
|
7 |
MAHMOUD A, OLIVIER J, VAXELAIRE J, et al. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering [J]. Water Research, 2010, 44(8): 2381-2407.
|
8 |
TUAN Pham-Anh, SILLANPÄÄ M. Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electro-dewatering process [J]. Chemical Engineering Journal, 2010, 164(1): 85-91.
|
9 |
SAVEYN H, CURVERS D, PEL L, et al. In situ determination of solidosity profiles during activated sludge electrodewatering [J]. Water Research, 2006, 40(11): 2135-2142.
|
10 |
YUAN Songhu, LIAO Peng, ALSHAWABKEH A N. Electrolytic manipulation of persulfate reactivity by iron electrodes for TCE degradation in groundwater [J]. Environmental Science & Technology, 2014, 48(1): 656-663.
|
11 |
ZHEN Guangyin, LU Xueqin, LI Yuyou, et al. Innovative combination of electrolysis and Fe(Ⅱ)-activated persulfate oxidation for improving the dewaterability of waste activated sludge [J]. Bioresource Technology, 2013, 136: 654-663.
|
12 |
LI Yifu, YUAN Xingzhong, WU Zhibin, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process [J]. Chemical Engineering Journal, 2016, 303: 636-645.
|
13 |
李亚林, 刘蕾, 张毅, 等. 电渗透/Fe-过硫酸盐氧化协同强化污泥深度脱水[J]. 化工学报, 2016, 67(9): 4013-4019.
|
|
LI Yalin, LIU Lei, ZHANG Yi, et al. Coordination of electro-osmotic and Fe-persulfate oxidation process on sewage sludge deep-dewatering [J]. CIESC Journal, 2016, 67(9): 4013-4019.
|
14 |
李亚林, 刘蕾, 侯金金, 等. 电渗透-过硫酸铵氧化协同强化污泥深度脱水[J]. 化工进展, 2017, 36(5): 1919-1926.
|
|
LI Yalin, LIU Lei, HOU Jinjin, et al. Coordination of electro-osmosis and ammonium persulfate on sewage sludge deep-dewatering [J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1919-1926.
|
15 |
张金贵. 纳米过氧化钙联合污泥裂解液降解土壤中四溴双酚A的研究[D]. 大连: 大连理工大学, 2016.
|
|
ZHANG Jingui. The degradation of tetrabromobisphenol-A in soil under sludge-lysate and CaO2 nanoparticles system [D]. Dalian: Dalian University of Technology, 2016.
|
16 |
李亚林, 刘蕾, 窦雪, 等. 双氧化协同电渗透污泥横向深度脱水系统: CN201920494967.8 [P]. 2020-02-04.
|
|
LI Yalin, LIU Lei, DOU Xue, et al. Sludge horizontal deep-dewatering system for double oxidation combined with electroosmosis: CN201920494967.8 [P]. 2020-02-04.
|
17 |
LI Y L, LIU J W, CHEN J Y, et al. Reuse of dewatered sewage sludge conditioned with skeleton builders as landfill cover material [J]. International Journal of Environmental Science and Technology, 2014, 11(1): 233-240.
|
18 |
GUO Guiquan, GAN Weiping, LUO Jian, et al. Preparation and dispersive mechanism of highly dispersive ultrafine silver powder [J]. Applied Surface Science, 2010, 256(22): 6683-6687.
|
19 |
邹俭鹏, 杨洪志, 刘如铁. 亚微米球形镍粉的两步法可控制备与表征[J]. 稀有金属材料与工程, 2018, 47(9): 2847-2851.
|
|
ZOU Jianpeng, YANG Hongzhi, LIU Rutie. Controllable preparation and characterization of sub-micron spherical Ni powder with two step method [J]. Rare Metal Materials and Engineering, 2018, 47(9): 2847-2851.
|
20 |
张莲芝, 魏镜弢, 吴张永. 高能球磨法制备纳米Fe3O4磁性颗粒的结构性能研究[J]. 硅酸盐通报, 2015, 34(11): 3192-3196.
|
|
ZHANG Lianzhi, WEI Jingtao, WU Zhangyong. Structure property of magnetic Fe3O4 nanoparticles by high energy ball mill [J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11): 3192-3196.
|
21 |
YU Wenbo, YANG Jiakuan, WU Xu, et al. Study on dewaterability limit and energy consumption in sewage sludge electro-dewatering by in-situ linear sweep voltammetry analysis [J]. Chemical Engineering Journal, 2017, 317: 980-987.
|
22 |
NGUYEN T T M, PARK Hee-Jin, KIM Jee Yeon, et al. Microbial Inactivation by cupric ion in combination with H2O2: role of reactive oxidants [J]. Environmental Science & Technology, 2013, 47(23): 13661-13667.
|
23 |
AGUIAR A, FERRAZ A. Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions [J]. Chemosphere, 2007, 66(5): 947-954.
|
24 |
SALAZAR R, BRILLAS E, SIRÉS I. Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3 [J]. Applied Catalysis B: Environmental, 2012, 115: 107-116.
|
25 |
MAHMOUD A, OLIVER J, VAXELAIRE J, et al. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects [J]. Water Research, 2011, 45(9): 2795-2810.
|