1 |
KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654.
|
2 |
邢丽. 新型金属/炭材料的合成、表征及催化加氢性能[D]. 大连: 大连理工大学, 2007.
|
|
XING L. Fabrication, characterization and catalytic hydrogenation properties of novel metal/carbon composites[D]. Dalian: Dalian University of Technology, 2007.
|
3 |
WANG S F, ZHOU A J, ZHANG J G, et al. Enhanced quinoline removal by zero-valent iron-coupled novel anaerobic processes: performance and underlying function analysis[J]. RSC Advances, 2019, 9(3): 1176-1186.
|
4 |
WANG Y Y, WANG D L, FANG H Y. Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron[J]. RSC Advances, 2018, 8(48): 27181-27190.
|
5 |
ZANG Y, YANG Y, HU Y S, et al. Zero-valent iron enhanced anaerobic digestion of pre-concentrated domestic wastewater for bioenergy recovery: characteristics and mechanisms[J]. Bioresource Technology, 2020, 310: 123441.
|
6 |
PAN X F, LYU N, LI C X, et al. Impact of nano zero valent iron on tetracycline degradation and microbial community succession during anaerobic digestion[J]. Chemical Engineering Journal, 2019, 359: 662-671.
|
7 |
XU W C, ZHAO H, CAO H B, et al. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: role of zero-valent iron in metagenomic functions[J]. Bioresource Technology, 2020, 300: 122667.
|
8 |
YANG Y, GUO J L, HU Z Q. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion[J]. Water Research, 2013, 47(17): 6790-6800.
|
9 |
XU R, XU S N, ZHANG L, et al. Impact of zero valent iron on blackwater anaerobic digestion[J]. Bioresource Technology, 2019, 285: 121351.
|
10 |
LI L, LI Z Y, SONG K, et al. Improving methane production from algal sludge based anaerobic digestion by co-pretreatment with ultrasound and zero-valent iron[J]. Journal of Cleaner Production, 2020, 255: 120214.
|
11 |
HE C H, LIN W S, ZHENG X H, et al. Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol[J]. Bioresource Technology, 2019, 291: 121874.
|
12 |
TANG H Y, HOLMES D E, UEKI T, et al. Iron corrosion via direct metal-microbe electron transfer[J]. mBio, 2019, 10(3). DOI: 10.1128/mbio.00303-19.
|
13 |
YANG Y, YANG F, HUANG W W, et al. Enhanced anaerobic digestion of ammonia-rich swine manure by zero-valent iron: with special focus on the enhancement effect on hydrogenotrophic methanogenesis activity[J]. Bioresource Technology, 2018, 270: 172-179.
|
14 |
BARUA S, DHAR B R. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion[J]. Bioresource Technology, 2017, 244: 698-707.
|
15 |
CHEN S J, TAO Z, YAO F B, et al. Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: insights in direct interspecies electron transfer mechanism[J]. Bioresource Technology, 2020, 316: 123901.
|
16 |
JIA H, YANG G, NGO H, et al. Enhancing simultaneous response and amplification of biosensor in microbial fuel cell-based upflow anaerobic sludge bed reactor supplemented with zero-valent iron[J]. Chemical Engineering Journal, 2017, 327: 1117-1127.
|
17 |
ZHU Y H, ZHAO Z Q, YANG Y F, et al. Dual roles of zero-valent iron in dry anaerobic digestion: enhancing interspecies hydrogen transfer and direct interspecies electron transfer[J]. Waste Management, 2020, 118: 481-490.
|
18 |
YU Q L, ZHANG Y B. Fouling-resistant biofilter of an anaerobic electrochemical membrane reactor[J]. Nature Communications, 2019, 10(1): 4860.
|
19 |
蒋海明, 王路路, 李侠. 微生物种间直接电子传递方式耦合产甲烷研究进展[J]. 高校化学工程学报, 2019, 33(6): 1303-1313.
|
|
JIANG H M, WANG L L, LI X. Advances in co-culture stoichiometrically producing mathane via direct interspecies electron transfer within microbes[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1303-1313.
|
20 |
JIANG J F, LI L H, CUI M C, et al. Anaerobic digestion of kitchen waste: the effects of source, concentration, and temperature[J]. Biochemical Engineering Journal, 2018, 135: 91-97.
|
21 |
YUAN T G, KO J H, ZHOU L L, et al. Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens[J]. Chemosphere, 2020, 247: 125866.
|
22 |
YIN Q D, YANG S, WANG Z Z, et al. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide[J]. Chemical Engineering Journal, 2018, 333: 216-225.
|
23 |
ZHANG Z S, GUO L, WANG Y, et al. Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: impact on the biogas production and the substrate metabolism[J]. Renewable Energy, 2020, 146: 2724-2735.
|
24 |
马金莲. 磁铁矿促进有机质厌氧降解过程及微生物机制初探[D]. 北京: 中国科学院大学, 2016.
|
|
MA J L. Magnetite promote anaerobic degradation of organic matters[D]. Beijing: University of Chinese Academy of Sciences, 2016.
|
25 |
IM S, YUN Y M, SONG Y C, et al. Enhanced anaerobic digestion of glycerol by promoting DIET reaction[J]. Biochemical Engineering Journal, 2019, 142: 18-26.
|
26 |
WANG D X, HAN Y X, HAN H J, et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite[J]. Bioresource Technology, 2018, 257: 147-156.
|
27 |
王德欣. 外源强化厌氧处理费托合成废水的效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
|
|
WANG D X. Research on enhanced anaerobic treatment of Fischer-Tropsch wastewater with the assistance of exogenous source[D]. Harbin: Harbin Institute of Technology, 2017.
|
28 |
BAEK G, JUNG H, KIM J, et al. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent—Magnetic separation and recycling of magnetite[J]. Bioresource Technology, 2017, 241: 830-840.
|
29 |
赵智强. 厌氧甲烷化中互养微生物种间直接电子传递的构建与强化[D]. 大连: 大连理工大学, 2017.
|
|
ZHAO Z Q. Establishment and enhancement of interspecies electron transfer between syntrophic microorganisms during anaerobic methanosenesis[D]. Dalian: Dalian University of Technology, 2017.
|
30 |
ZHU H, HAN Y X, MA W C, et al. New insights into enhanced anaerobic degradation of coal gasification wastewater (CGW) with the assistance of graphene[J]. Bioresource Technology, 2018, 262: 302-309.
|
31 |
ZHUANG H F, ZHU H, SHAN S D, et al. Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted[J]. Bioresource Technology, 2018, 270: 230-235.
|
32 |
ZHANG S, CHANG J L, LIN C, et al. Enhancement of methanogenesis via direct interspecies electron transfer between Geobacteraceae and Methanosaetaceae conducted by granular activated carbon[J]. Bioresource Technology, 2017, 245: 132-137.
|
33 |
SHRESTHA P M, MALVANKAR N S, WERNER J J, et al. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment[J]. Bioresource Technology, 2014, 174: 306-310.
|
34 |
YANG Y F, ZHANG Y B, LI Z Y, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149: 1101-1108.
|
35 |
PEREIRA L, DIAS P, SOARES O S G P, et al. Synthesis, characterization and application of magnetic carbon materials as electron shuttles for the biological and chemical reduction of the azo dye Acid Orange 10[J]. Applied Catalysis B: Environmental, 2017, 212: 175-184.
|
36 |
ZHUANG H F, HAN H J, XU P, et al. Biodegradation of quinoline by Streptomyces sp. N01 immobilized on bamboo carbon supported Fe3O4 nanoparticles[J]. Biochemical Engineering Journal, 2015, 99: 44-47.
|
37 |
ZHANG M, LI J H, WANG Y C. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge[J]. Environmental Science and Pollution Research, 2019, 26(10): 10292-10305.
|
38 |
ZHUANG H F, ZHU H, ZHANG J, et al. Enhanced 2,4,6-trichlorophenol anaerobic degradation by Fe3O4 supported on water hyacinth biochar for triggering direct interspecies electron transfer and its use in coal gasification wastewater treatment[J]. Bioresource Technology, 2020, 296: 122306.
|
39 |
GONG K D, HU Q, YAO L, et al. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr(Ⅵ) removal from wastewater[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 7283-7291.
|
40 |
ZHANG Z H, GAO P, CHENG J Q, et al. Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator[J]. Water Research, 2018, 136: 54-63.
|
41 |
DONG D, WANG R K, GENG P F, et al. Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater[J]. Journal of Environmental Management, 2019, 244: 1-12.
|
42 |
QIN Y, WANG H S, LI X R, et al. Improving methane yield from organic fraction of municipal solid waste (OFMSW) with magnetic rice-straw biochar[J]. Bioresource Technology, 2017, 245: 1058-1066.
|
43 |
ZHAO Z Q, LI Y, QUAN X, et al. Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials[J]. Water Research, 2017, 115: 266-277.
|