1 |
DANELLAKIS D, NTAIKOU I, KORNAROS M, et al. Olive oil mill wastewater toxicity in the marine environment: alterations of stress indices in tissues of mussel Mytilus galloprovincialis[J]. Aquatic Toxicology, 2011, 101(2): 358-366.
|
2 |
COZZARELLI I M, SKALAK K J, KENT D B, et al. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota[J]. Science of the Total Environment, 2017, 579: 1781-1793.
|
3 |
BURGOS W D, CASTILLO-MEZA L, TASKER T L, et al. Watershed-scale impacts from surface water disposal of oil and gas wastewater in western Pennsylvania[J]. Environmental Science & Technology, 2017, 51(15): 8851-8860.
|
4 |
WEI X C, ZHANG S C, HAN Y X, et al. Treatment of petrochemical wastewater and produced water from oil and gas[J]. Water Environment Research, 2019, 91(10): 1025-1033.
|
5 |
王长青, 张西华, 宁朋歌, 等. 含油废水处理工艺研究进展及展望[J]. 化工进展, 2021, 40(1): 451-462.
|
|
WANG Changqing, ZHANG Xihua, NING Pengge, et al. Research advances and perspective on treatment processes for oily wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 451-462.
|
6 |
杨瑞, 张翻. 含油废水处理技术进展[J]. 当代化工, 2018, 47(8): 1695-1697, 1701.
|
|
YANG Rui, ZHANG Fan. Development of oily wastewater treatment technology[J]. Contemporary Chemical Industry, 2018, 47(8): 1695-1697, 1701.
|
7 |
YUE X J, LI Z D, ZHANG T, et al. Design and fabrication of superwetting fiber-based membranes for oil/water separation applications[J]. Chemical Engineering Journal, 2019, 364: 292-309.
|
8 |
SHI G G, SHEN Y Q, MU P, et al. Effective separation of surfactant-stabilized crude oil-in-water emulsions by using waste brick powder-coated membranes under corrosive conditions[J]. Green Chemistry, 2020, 22(4): 1345-1352.
|
9 |
ZHANG H J, SHEN Y Q, LI M J, et al. Egg shell powders-coated membrane for surfactant-stabilized crude oil-in-water emulsions efficient separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10880-10887.
|
10 |
CHU Z L, FENG Y J, SEEGER S. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angewandte Chemie: International Edition, 2015, 54(8): 2328-2338.
|
11 |
曾新娟, 王丽, 皮丕辉, 等. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
|
|
ZENG Xinjuan, WANG Li,PI Pihui, et al. Development and research of special wettability materials for oil/water separation[J]. Progress in Chemistry, 2018, 30(1): 73-86.
|
12 |
曹思静, 潘子鹤, 杜志平, 等. 超亲水/水下超疏油膜的制备及油水分离性能[J]. 化工进展, 2018, 37(10): 3744-3750.
|
|
CAO Sijing, PAN Zihe, DU Zhiping, et al. Fabrication of superhydrophilic/underwater superoleophobic mesh for oil-water separation[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3744-3750.
|
13 |
GE M Z, CAO C Y, HUANG J Y, et al. Rational design of materials interface at nanoscale towards intelligent oil-water separation[J]. Nanoscale Horizons, 2018, 3(3): 235-260.
|
14 |
GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058.
|
15 |
ZHANG F, ZHANG W B, SHI Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation[J]. Advanced Materials, 2013, 25(30): 4192-4198.
|
16 |
CUI M K, MU P, SHEN Y Q, et al. Three-dimensional attapulgite with sandwich-like architecture used for multifunctional water remediation[J]. Separation and Purification Technology, 2020, 235: 116210.
|
17 |
GE J L, ZHANG J C, WANG F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation[J]. Journal of Materials Chemistry A, 2017, 5(2): 497-502.
|
18 |
LI H, YIN Y Y, ZHU L, et al. A hierarchical structured steel mesh decorated with metal organic framework/graphene oxide for high-efficient oil/water separation[J]. Journal of Hazardous Materials, 2019, 373: 725-732.
|
19 |
SONG S, YANG H, ZHOU C L, et al. Underwater superoleophobic mesh based on BiVO4 nanoparticles with sunlight-driven self-cleaning property for oil/water separation[J]. Chemical Engineering Journal, 2017, 320: 342-351.
|
20 |
JIANG Z X, GENG L, HUANG Y D, et al. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf[J]. Journal of Colloid and Interface Science, 2011, 354(2): 866-872.
|
21 |
LUO Q, ZHANG L, CHEN X, et al. Mechanochemically synthesized m-BiVO4 nanoparticles for visible light photocatalysis[J]. RSC Advances, 2016, 6(19): 15796-15802.
|
22 |
李杰, 宋晨飞, 逄显娟. 可见光催化剂钒酸铋的可控合成及性能研究[J]. 无机材料学报, 2019, 34(2): 164-172.
|
|
LI Jie, SONG Chenfei, PANG Xianjuan. Controllable synthesis and photocatalytic performance of BiVO4 under visible-light irradiation[J]. Journal of Inorganic Materials, 2019, 34(2): 164-172.
|
23 |
王捷琳, 廖蕊, 李园利, 等. 化学溶液法制备BiVO4纳米晶及其结构、形貌及光谱性质研究[J]. 四川大学学报(自然科学版), 2020, 57(2): 341-347.
|
|
WANG Jielin, LIAO Rui, LI Yuanli, et al. Structural, morphological and spectral properties of BiVO4 nanocrystals fabricated by a chemical protocol[J]. Journal of Sichuan University(Natural Science Edition), 2020, 57(2): 341-347.
|
24 |
杨浩, 胡晓婧, 张恋, 等. ZnO纳米棒有序阵列的制备及其AFM表征[J]. 武汉大学学报(理学版), 2013, 59(4): 306-310.
|
|
YANG Hao, HU Xiaojing, ZHANG Lian, et al. Fabrication of aligned ZnO nanorod array and its AFM characterization[J]. Journal of Wuhan University(Natural Science Edition), 2013, 59(4): 306-310.
|
25 |
CHEN C L, WENG D, MAHMOOD A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 11006-11027.
|