化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2581-2592.DOI: 10.16085/j.issn.1000-6613.2020-1243
收稿日期:
2020-07-02
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
柯义虎
作者简介:
柯义虎(1984—),男,博士,讲师,硕士生导师,研究方向为多相催化。E-mail:基金资助:
KE Yihu1(), LI Jingyun1, LIU Chunling2, DONG Wensheng2, LIU Hai1
Received:
2020-07-02
Online:
2021-05-06
Published:
2021-05-24
Contact:
KE Yihu
摘要:
以尿素为沉淀剂,采用均匀沉积沉淀法制备了Zn(Al)O复合氧化物负载Au催化剂,并用于无碱条件下催化氧化甘油制备1,3-二羟基丙酮(DHA)反应,值得注意的是随着载体中Zn/Al摩尔比的不同,负载Au催化剂的催化活性和产物DHA的选择性呈现明显差距。结合X射线衍射(XRD)、X射线光电子能谱(XPS)、透射电镜(TEM)、CO吸附傅里叶变换红外光谱(CO吸附FTIR)等表征手段,发现载体Zn(Al)O复合氧化物中Zn/Al摩尔比会影响表面氧物种的含量并进一步会影响催化剂的催化活性和选择性。当Zn/Al摩尔比为7∶1、反应温度为80℃、氧气压力为10bar、反应2h时获得最佳的甘油转化率(58.5%)和DHA的选择性(95.3%)。同时,还考察了反应温度、反应时间、反应压力及载体的焙烧温度对催化性能的影响,并发现反应条件对催化剂的催化活性和选择性均有不同程度的影响。此外,以Au/Zn(Al)O-7∶1催化剂为基准考察了催化剂的稳定性,并通过表征手段分析了催化剂失活的主要原因。
中图分类号:
柯义虎, 李景云, 刘春玲, 董文生, 刘海. Zn(Al)O复合氧化物负载Au催化剂催化氧化甘油制备1,3-二羟基丙酮[J]. 化工进展, 2021, 40(5): 2581-2592.
KE Yihu, LI Jingyun, LIU Chunling, DONG Wensheng, LIU Hai. Zn(Al)O composite oxides supported Au catalysts for selective oxidation of glycerol to 1, 3-dihydroxyacetone[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2581-2592.
催化剂 | Au负载量/% | Zn质量分数/% | Al质量分数/% | Au/Al原子比 | Zn/Al原子比 | SBET /m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 1.37 | 33.4 | 12.8 | 0.015 | 1.08 | 113.8 | 0.16 | 7.7 |
Au/Zn(Al)O-2 | 1.21 | 41.1 | 7.6 | 0.022 | 2.23 | 66.2 | 0.21 | 13.6 |
Au/Zn(Al)O-3 | 1.15 | 46.5 | 5.6 | 0.028 | 3.45 | 37.7 | 0.20 | 22.3 |
Au/Zn(Al)O-4 | 1.33 | 54.0 | 3.6 | 0.051 | 6.23 | 34.9 | 0.21 | 25.0 |
Au/Zn(Al)O-5 | 1.43 | 60.2 | 2.6 | 0.075 | 9.58 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-6 | 1.14 | 64.9 | 2.2 | 0.071 | 12.25 | 28.9 | 0.17 | 22.9 |
表1 各Au/Zn(Al)O-x催化剂的织构性质及化学组成分析
催化剂 | Au负载量/% | Zn质量分数/% | Al质量分数/% | Au/Al原子比 | Zn/Al原子比 | SBET /m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 1.37 | 33.4 | 12.8 | 0.015 | 1.08 | 113.8 | 0.16 | 7.7 |
Au/Zn(Al)O-2 | 1.21 | 41.1 | 7.6 | 0.022 | 2.23 | 66.2 | 0.21 | 13.6 |
Au/Zn(Al)O-3 | 1.15 | 46.5 | 5.6 | 0.028 | 3.45 | 37.7 | 0.20 | 22.3 |
Au/Zn(Al)O-4 | 1.33 | 54.0 | 3.6 | 0.051 | 6.23 | 34.9 | 0.21 | 25.0 |
Au/Zn(Al)O-5 | 1.43 | 60.2 | 2.6 | 0.075 | 9.58 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-6 | 1.14 | 64.9 | 2.2 | 0.071 | 12.25 | 28.9 | 0.17 | 22.9 |
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | O 1s结合能/eV | Au/Al原子比 | Zn/Al原子比 |
---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 83.57 | 1021.86 | 74.01 | 530.61 | 0.023 | 0.148 |
Au/Zn(Al)O-2 | 83.48 | 1021.73 | 74.15 | 531.84 | 0.044 | 0.294 |
Au/Zn(Al)O-3 | 83.41 | 1021.73 | 74.19 | 530.13 | 0.087 | 0.583 |
Au/Zn(Al)O-4 | 83.43 | 1021.71 | 74.33 | 530.15 | 0.180 | 1.060 |
Au/Zn(Al)O-5 | 83.51 | 1021.83 | 74.55 | 530.25 | 1.431 | 9.73 |
Au/Zn(Al)O-6 | 83.54 | 1021.64 | 74.70 | 530.10 | 0.102 | 1.172 |
表2 各催化剂中元素的结合能及元素的原子比
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | O 1s结合能/eV | Au/Al原子比 | Zn/Al原子比 |
---|---|---|---|---|---|---|
Au/Zn(Al)O-1 | 83.57 | 1021.86 | 74.01 | 530.61 | 0.023 | 0.148 |
Au/Zn(Al)O-2 | 83.48 | 1021.73 | 74.15 | 531.84 | 0.044 | 0.294 |
Au/Zn(Al)O-3 | 83.41 | 1021.73 | 74.19 | 530.13 | 0.087 | 0.583 |
Au/Zn(Al)O-4 | 83.43 | 1021.71 | 74.33 | 530.15 | 0.180 | 1.060 |
Au/Zn(Al)O-5 | 83.51 | 1021.83 | 74.55 | 530.25 | 1.431 | 9.73 |
Au/Zn(Al)O-6 | 83.54 | 1021.64 | 74.70 | 530.10 | 0.102 | 1.172 |
催化剂 | 转化率 /% | 选择性/% | 转换频率 /s-1 | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
Au/Zn(Al)O-1 | 28.9 | 1.8 | 2.4 | 2.4 | 93.4 | 0.0143 |
Au/Zn(Al)O-2 | 32.6 | 0.8 | 4.5 | 5.6 | 89.1 | 0.0339 |
Au/Zn(Al)O-3 | 48.2 | 0.6 | 2.0 | 5.8 | 91.6 | 0.0343 |
Au/Zn(Al)O-4 | 51.3 | 0.6 | 1.6 | 5.7 | 92.2 | 0.0302 |
Au/Zn(Al)O-5 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 0.0393 |
Au/Zn(Al)O-6 | 54.4 | 0.5 | 1.2 | 5.0 | 93.3 | 0.0459 |
表3 无碱条件下Au/Zn(Al)O催化剂催化氧化甘油制备DHA
催化剂 | 转化率 /% | 选择性/% | 转换频率 /s-1 | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
Au/Zn(Al)O-1 | 28.9 | 1.8 | 2.4 | 2.4 | 93.4 | 0.0143 |
Au/Zn(Al)O-2 | 32.6 | 0.8 | 4.5 | 5.6 | 89.1 | 0.0339 |
Au/Zn(Al)O-3 | 48.2 | 0.6 | 2.0 | 5.8 | 91.6 | 0.0343 |
Au/Zn(Al)O-4 | 51.3 | 0.6 | 1.6 | 5.7 | 92.2 | 0.0302 |
Au/Zn(Al)O-5 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 0.0393 |
Au/Zn(Al)O-6 | 54.4 | 0.5 | 1.2 | 5.0 | 93.3 | 0.0459 |
催化剂 | 转化率/% | 选择性/% | |||
---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | ||
Au/Zn(Al)O-5-400 | 42.0 | 0.5 | 2.0 | 4.6 | 93.0 |
Au/Zn(Al)O-5-500 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 |
Au/Zn(Al)O-5-600 | 47.9 | 0.4 | 1.7 | 6.4 | 91.4 |
表4 不同焙烧温度的载体负载Au催化剂对催化性能的影响
催化剂 | 转化率/% | 选择性/% | |||
---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | ||
Au/Zn(Al)O-5-400 | 42.0 | 0.5 | 2.0 | 4.6 | 93.0 |
Au/Zn(Al)O-5-500 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 |
Au/Zn(Al)O-5-600 | 47.9 | 0.4 | 1.7 | 6.4 | 91.4 |
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | Au/Al原子比 | Zn/Al原子比 | SBET/m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-5-400 | 83.43 | 1021.52 | 74.54 | 1.439 | 9.68 | 36.7 | 0.18 | 19.5 |
Au/Zn(Al)O-5-500 | 83.51 | 1021.83 | 74.55 | 1.431 | 9.73 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-5-600 | 83.35 | 1021.59 | 74.53 | 1.420 | 9.85 | 34.0 | 0.19 | 22.4 |
表5 各Au/Zn(Al)O-5-T催化剂的织构性质、元素的结合能及元素的原子比
催化剂 | Au 4f7/2结合能/eV | Zn 2p3/2结合能/eV | Al 2p3/2结合能/eV | Au/Al原子比 | Zn/Al原子比 | SBET/m2·g-1 | Vp/m3·g-1 | Dp/nm |
---|---|---|---|---|---|---|---|---|
Au/Zn(Al)O-5-400 | 83.43 | 1021.52 | 74.54 | 1.439 | 9.68 | 36.7 | 0.18 | 19.5 |
Au/Zn(Al)O-5-500 | 83.51 | 1021.83 | 74.55 | 1.431 | 9.73 | 30.7 | 0.17 | 22.5 |
Au/Zn(Al)O-5-600 | 83.35 | 1021.59 | 74.53 | 1.420 | 9.85 | 34.0 | 0.19 | 22.4 |
反应 次数 | 转化率 /% | 选择性/% | Zn元素流失 /% | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
1 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 3.41 |
2 | 17.3 | 0.6 | 5.2 | 3.6 | 90.7 | 2.20 |
3 | 9.5 | 0.9 | 7.1 | 2.3 | 89.7 | 1.74 |
表6 Au/Zn(Al)O-5催化剂循环实验
反应 次数 | 转化率 /% | 选择性/% | Zn元素流失 /% | |||
---|---|---|---|---|---|---|
草酸 | 甘油酸 | 乙醇酸 | DHA | |||
1 | 58.5 | 0.4 | 0.9 | 3.4 | 95.3 | 3.41 |
2 | 17.3 | 0.6 | 5.2 | 3.6 | 90.7 | 2.20 |
3 | 9.5 | 0.9 | 7.1 | 2.3 | 89.7 | 1.74 |
1 | Amin TALEBIAN-KIAKALAIEH, AMIN Nor Aishah Saidina, RAJAEI Kourosh, et al. Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes[J]. Applied Energy, 2018, 230: 1347-1379. |
2 | VILLA Alberto, DIMITRATOS Nikolaos, CHAN-THAW Carine E, et al. Glycerol oxidation using gold-containing catalysts[J]. Accounts of Chemical Research, 2015, 48(5): 1403-1412. |
3 | CORMA Avelino, IBORRA Sara, VELTY Alexandra. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
4 | BEHR Arno, EILTING Jens, IRAWADI Ken, et al. Improved utilisation of renewable resources: new important derivatives of glycerol[J]. Green Chemistry, 2008, 10(1): 13-30. |
5 | ZHOU Chunhui, BELTRAMINI Jorge N, FAN Yongxian, et al. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chemical Society Reviews, 2008, 37(3): 527-549. |
6 | CATTERTTIN Silvio, MCMORN Paul, JOHNSTON Peter, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide[J]. Chemical Communications, 2002(7): 696-697. |
7 | DEMIREL Silvio, LEHNERT K, LUCAS M, et al. Use of renewables for the production of chemicals: glycerol oxidation over carbon supported gold catalysts[J]. Applied Catalysis B: Environmental, 2007, 70(1-4): 637-643. |
8 | BESSON M, GALLEZOT P, PINEL G. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3): 1827-1870. |
9 | DODEKATOS Godekatos, Stefan SCHÜINENMANN, Harun TÜYSÜZ. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catalysis, 2018, 8(7): 6301-6333. |
10 | YANG Lihua, LI Xuewen, CHEN Ping, et al. Selective oxidation of glycerol in a base-free aqueous solution: a short review[J]. Chinese Journal of Catalysis, 2019, 40(7): 1020-1034. |
11 | KATRYNIOK Benjamin, KIMURA Hiroshi, Elżbieta SKRZYŃSKA, et al. Selective catalytic oxidation of glycerol: perspectives for high value chemicals[J]. Green Chemistry, 2011, 13(8): 1960-1979. |
12 | Juraj ŠVITEL, Ernest ŠTURDÍK. Product yield and by-product formation in glycerol conversion to dihydroxyacetone by Gluconobacter oxydans[J]. Journal of Fermentation and Bioengineering, 1994, 78(5): 351-355. |
13 | WEI Shenghua, SONG Qingxun, WEI Dongzhi. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone[J]. Preparative Biochemistry & Biotechnology, 2007, 37(2):113-121. |
14 | KIMURA H, TSUTO K, WAKISAKA T, et al. Selective oxidation of glycerol on a platinum-bismuth catalyst[J]. Applied Catalysis A: General, 1993, 96 (2): 217-228. |
15 | LIANG Dan, GAO Jing, WANG Junhua, et al. Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts[J]. Catalysis Communications, 2009, 10(12): 1586-1590. |
16 | GAO Jing, LIANG Dan, CHEN Ping, et al. Oxidation of glycerol with oxygen in a base-free aqueous solution over Pt/AC and Pt/MWNTs catalysts[J]. Catalysis Letters, 2009, 130(1/2): 185-191. |
17 | LIANG Dan, GAO Jing, SUN Hui, et al. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts[J]. Applied Catalysis B: Environmental, 2011, 106: 423-432. |
18 | CHEN Shasha, QI Puyu, CHEN Jin, et al. Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution[J]. RSC Advances, 2015, 5: 31566-31574. |
19 | ZHANG Mengyuan, SHI Juanjuan, SUN Yanyan, et al. Selective oxidation of glycerol over nitrogen-doped carbon nanotubes supported platinum catalyst in base-free solution[J]. Catalysis Communications, 2015, 70: 72-76. |
20 | KIMURA Hiroshi. Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor[J]. Applied Catalysis A: General, 1993, 105(2): 147-158. |
21 | GARCIA Régis, BESSON Michèle, GALLEZOT Pierre. Chemoselective catalytic oxidation of glycerol with air on platinum metals[J]. Applied Catalysis A: General, 1995, 127(1/2): 165-176. |
22 | HU Wenbin, KNIGHT Daniel, LOWRY Brian, et al. Selective oxidation of glycerol to dihydroxyacetone over Pt-Bi/C catalyst: optimization of catalyst and reaction conditions[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10876-10882. |
23 | BRANDNER A, LEHNERT K, BIENHOLZ A, et al. Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol[J]. Topics in Catalysis, 2009, 52: 278-287. |
24 | LIANG Dan, CUI Shiyu, GAO Jing, et al. Glycerol oxidation with oxygen over bimetallic Pt-Bi catalysts under atmospheric pressure[J]. Chinese Journal of Catalysis, 2011, 32(11/12): 1831-1837. |
25 | NIE Renfeng, LIANG Dan, SHEN Lian, et al. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 127: 212-220. |
26 | DOU Jian, ZHANG Bowei, LIU Hai, et al. Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation[J]. Applied Catalysis B: Environmental, 2016, 180: 78-85. |
27 | HIRASAWA S, NAKAGAWA Y, TOMISHIGE K. Selective oxidation of glycerol to dihydroxyacetone over a Pd-Ag catalyst[J]. Catalysis Science & Technology, 2012, 2: 1150-1152. |
28 | HIRASAWA S, WATANABE H, KIZUKA T, et al. Performance, structure and mechanism of Pd-Ag alloy catalyst for selective oxidation of glycerol to dihydroxyacetone[J]. Journal of Catalysis, 2013, 300: 205-216. |
29 | HARUTA Masatake, KOBAYASHI Tetsuhiko, SANO Hiroshi, et al. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0℃[J]. Chemistry Letters, 1987, 16(2): 405-408. |
30 | Núria LOPEZ, Mónica GARCIA-MOTA, Jaime GOMEZ-DIAZ. NH3 oxidation on oxygen-precovered Au(111): a density functional theory study on selectivity[J]. The Journal of Physical Chemistry C, 2008, 112: 247-252. |
31 | XU Bingjun, LIU Xiaoying, HAUBRICH Jan, et al. Selectivity control in gold-mediated esterification of methanol[J]. Angewandte Chemie: International Edition, 2009, 48: 4206-4209. |
32 | OUTKA Duane A, MADIX Robert J. Broensted basicity of atomic oxygen on the gold(110) surface: reactions with methanol, acetylene, water, and ethylene[J]. Journal of the American Chemical Society, 1987, 109: 1708-1714. |
33 | HE Lin, NI Ji, WANG Lucun, et al. Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes[J]. Chemistry, 2009, 15(44):11833-11836. |
34 | DU Xianlong, HE Lin, ZHAO She, et al. Hydrogen-independent reductive transformation of carbohydrate biomass into γ-valeroiactone and pyrrolidone derivatives with supported gold catalysts[J]. Angewandte Chemie: International Edition, 2011, 50(34): 7815-7819. |
35 | HE Lin, WANG Lucun, SUN Hao, et al. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source[J]. Angewandte Chemie International Edition, 2009, 48(50): 9538-9541. |
36 | RODRIGUES Elodie G, PEREIRA Manuel F R, DELGADO Juan J, et al. Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes[J]. Catalysis Communications, 2011, 16: 64-69. |
37 | PORTS Francesca, PRATI Laura. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity[J]. Journal of Catalysis, 2004, 224(2): 397-403. |
38 | KETCHIE Willian C, MURAYAMA Mitsuhiro, DAVIS Robert J. Selective oxidation of glycerol over carbon-supported AuPd catalysts[J]. Journal of Catalysis, 2007, 250(2): 264-273. |
39 | RODRIGUES Elodie G, PEREIRA Manuel F R, CHEN Xiaowei, et al. Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation[J]. Journal of Catalysis, 2011, 281(1): 119-127. |
40 | SUN Yanyan, LI Xuewen, WANG Jiangguo, et al. Carbon film encapsulated Pt NPs for selective oxidation of alcohols in acidic aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 218(5): 538-544. |
41 | YANG Lihua, LI Xuewen, SUN Yangyang, et al. Selective oxidation of glycerol in base-free conditions over N-doped carbon film coated carbon supported Pt catalysts[J]. Catalysis Communications, 2017, 101: 107-110. |
42 | DIMITRATOS Nikolaos, VILLA Aaberto, PRATI Laura, et al. Effect of the preparation method of supported Au nanoparticles in the liquid phase oxidation of glycerol[J]. Applied Catalysis A: General, 2016, 514: 267-275. |
43 | ZHANG Mengyuan, SUN Yanyan, SHI Juanjuan, et al. Selective glycerol oxidation using platinum nanoparticles supported on multi-walled carbon nanotubes and nitrogen-doped graphene hybrid[J]. Chinese Journal of Catalysis, 2017, 38(3): 537-544. |
44 | LIANG Dan, GAO Jing, WANG Junhua, et al. Bimetallic Pt-Cu catalysts for glycerol oxidation with oxygen in a base-free aqueous solution[J]. Catalysis Communications, 2011, 12(12): 1059-1062. |
45 | TINCOCO Miguel, Susana FERNANDEZ-GARCIA, VILLA Alberto, et al. Selective oxidation of glycerol on morphology controlled ceria nanomaterials[J]. Catalysis Science & Technology, 2019, 9(9): 2328-2334. |
46 | PURUSHOTHAMAN Rajeesh Kumar Pazhavelikkakath, HAVEREN J VAN, VAN ES D S, et al. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support[J]. Applied Catalysis B: Environmental, 2014, 147: 92-100. |
47 | DIMITRATOS Nikolaos, LOPEZ-SANCHEZ Jose Antonic, ANTHONYKUTTY Jinto Manjaly, et al. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals[J]. Physical Chemistry Chemical Physics, 2009, 11(25): 4952-4961. |
48 | XU Jilei, ZHANG Hongye, ZHAO Yanfei, et al. Selective oxidation of glycerol to lactic acid under acidic conditions using AuPd/TiO2 catalyst[J]. Green Chemistry, 2013, 15(6):1520-1525. |
49 | MUSIALSKA Karolina, FINOCCHIO Elisabetta, SOBCZAK Izabela, et al. Characterization of alumina- and niobia-supported gold catalysts used for oxidation of glycerol[J]. Applied Catalysis A: General, 2010, 384(1/2): 70-77. |
50 | PAN Yongning, WU Guandong, HE Yufei, et al. Identification of the Au/ZnO interface as the specific active site for the selective oxidation of the secondary alcohol group in glycerol[J]. Journal of Catalysis, 2019, 369: 222-232. |
51 | MENG Ye, ZOU Shihui, ZHOU Yuheng, et al. Activating molecular oxygen by Au/ZnO to selectively oxidize glycerol to dihydroxyacetone[J]. Catalysis Science & Technology, 2018, 8(10): 2524-2528. |
52 | LIU Shusen, SUN Keqiang, XU Boqing. Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base[J]. ACS Catalysis, 2014, 4(7): 2226-2230. |
53 | 袁德玲. CuNiTi类水滑石衍生物富氧丙烯选择性催化还原NO的研究[D].大连:大连理工大学,2013. |
YUAN Deling. CuNiTi hydrotalcite-derived catalysts for selective catalytic reduction of NO with C3H6 under lean-burn conditions[D]. Dalian: Dalian University of Technology, 2013. | |
54 | XU Chunli, SUN Jun, ZHAO Binbin, et al. On the study of KF/Zn(Al)O catalyst for biodiesel production from vegetable oil[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 111-117. |
55 | MURCIA-MASCAROS S, NAVARRO R M, GOMEZ-SAINERO L, et al. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors[J]. Journal of Catalysis, 2001, 198(2): 338-347. |
56 | CHOUDARY B M, KANTAM M L, RAHMAN A, et al. The first example of activation of molecular oxygen by nickel in Ni-Al hydrotalcite: a novel protocol for the selective oxidation of alcohols[J]. Angewandte Chemie: International Edition, 2001, 113(4): 785-788. |
57 | BARRAULT J, DEROUAULT A, COURTOIS G, et al. On the catalytic properties of mixed oxides obtained from the Cu-Mg-Al LDH precursors in the process of hydrogenation of the cinnamaldehyde[J]. Applied Catalysis A: General, 2004, 262(1): 43-51. |
58 | LI Landong, YU Jiejun, HAO Zhengping, et al. Novel Ru-Mg-Al-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition/reduction[J]. The Journal of Physical Chemistry C, 2007, 111(28): 10552-10559. |
59 | KE Yihu, LI Xiaohua, LI Jifan, et al. Conversion of glycerol to dihydroxyacetone over Au catalysts on various supports[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(4): 1153-1162. |
60 | MOREAU Francois, BOND Geoffrey C, TAYLOR Adrian O. Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents[J]. Journal of Catalysis, 2005, 231(1): 105-114. |
61 | MOREAU Francois, BOND Geoffrey C. Gold on titania catalysts, influence of some physicochemical parameters on the activity and stability for the oxidation of carbon monoxide[J]. Applied Catalysis A: General, 2006, 302(1): 110-117. |
62 | YOU Kuenjiun, CHANG Chingtu, LIAW Biingjye, et al. Selective hydrogenation of α,β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts[J]. Applied Catalysis A: General, 2009, 361(1/2): 65-71. |
63 | PATZK􀆕 Ágnes, KUN Robert, HORNOK Viktória,et al. ZnAl-layer double hydroxides as photocatalysts for oxidation of phenol in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 265(1/2/3): 64-72. |
64 | WOLF Anke, Ferdi SCHÜTH. A systematic study of the synthesis conditions for the preparation of highly active gold catalysts[J]. Applied Catalysis A: General, 2002, 226: 1-13. |
65 | LEPPELT R, SCHUMACHER B, PLZAK V, et al. Kinetics and mechanism of the low-temperature water-gas shift reaction on Au/CeO2 catalysts in an idealized reaction atmosphere[J]. Journal of Catalysis, 2006, 244(2): 137-152. |
66 | 毕博. 新型杂多酸类水滑石插层材料的制备和吸附、光催化性能研究[D]. 长春:东北师范大学,2012. |
BI Bo. Study on preparation, adsorption and photocatalytic performance of polyoxometalated layered double hydroxides[D]. Changchun: Northeast Normal University, 2012. | |
67 | REICHLE Walter T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals[J]. Journal of Catalysis, 1985, 94(2): 547-557. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[11] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[12] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[13] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[14] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[15] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |