化工进展 ›› 2021, Vol. 40 ›› Issue (4): 2278-2289.DOI: 10.16085/j.issn.1000-6613.2020-0994
收稿日期:
2020-06-04
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
聂煜东
作者简介:
聂煜东(1987—),男,工学博士,助理研究员,研究方向为水污染处理。E-mail:基金资助:
NIE Yudong1,2(), LI Jin1, ZHANG Xianming1
Received:
2020-06-04
Online:
2021-04-05
Published:
2021-04-14
Contact:
NIE Yudong
摘要:
膜技术是一种高效、先进的废水处理技术,在颗粒物、有机物、微生物等去除上具有独特优势。然而,在实际使用时随着膜污染的不断累积,膜的污染物去除能力会逐步下降,极大地影响了水处理效果,并导致膜维护成本居高不下。本文围绕膜污染问题,介绍了影响膜污染的主要因素以及实际运行过程中的膜污染类型;概述了膜污染主要机理,并对其完善历程展开回顾;简述了减缓膜污染的各种措施,并且在此基础上,重点介绍了膜污染预处理技术及各类预处理技术的特点。
中图分类号:
聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289.
NIE Yudong, LI Jin, ZHANG Xianming. Research progress on membrane fouling and its pretreatment technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2278-2289.
分类依据 | 膜污染类型 | 污染类型介绍 |
---|---|---|
膜类型[ | 微滤膜污染 | 过滤精度一般在0.1~5μm,用于简单的粗过滤,难以去除大分子有机物、无机盐,但能阻挡悬浮颗粒、部分微生物、大尺寸胶体穿透[ |
超滤膜污染 | 过滤精度在0.001~0.1μm,是一种利用压差的膜法分离技术,能够截留住分子量≥10000的有机物、全部胶体及微生物等[ | |
纳滤膜污染 | 过滤精度介于超滤和反渗透之间,运行压力为0.3~1.4MPa,能有效去除水中的二价及高价离子、无机盐及低分子有机化合物[ | |
反渗透膜污染 | 过滤精度为0.0001μm左右,能够截留大部分无机离子[ | |
可逆性[ | 可逆膜污染 | 由污染物颗粒所引起的浓差极化和表面附着等污染,可以通过水力冲洗、气泡冲刷等物理方式去除污染物,恢复透水能力[ |
不可逆膜污染 | 由溶解性有机物所引起的吸附、附着等污染只能采用化学方式才会恢复膜的初始性能[ | |
污染产生位置[ | 膜表面覆盖污染 | 一般是指胶体颗粒物质、大分子有机物等污染物在膜表面堆积形成的污染 |
膜内部堵塞污染 | 指部分小分子有机物通过堵塞和吸附的形式沉积于膜孔内部 | |
污染物种类[ | 颗粒物污染 | 悬浮颗粒及胶体颗粒在膜表面上聚集,主要造成膜孔堵塞以及后续形成滤饼层 |
有机污染 | 主要是蛋白质、多糖、脂质等有机聚合物在膜表面附着,且水体中的溶解性有机物发生浓度极化现象,在膜表面积累[ | |
无机污染 | 主要污染源是含钙和镁等的硫酸盐或碳酸盐,是盐溶液在膜表面浓缩的结果。水体中无机污染物的增加将会加速颗粒污染物、有机物等在膜表面的积累[ | |
微生物污染 | 主要是微生物及其代谢产物组成的生物粘泥黏附在膜表面,主要引起纳滤(NF)和反渗透(RO)膜污染[ |
表1 膜污染类型
分类依据 | 膜污染类型 | 污染类型介绍 |
---|---|---|
膜类型[ | 微滤膜污染 | 过滤精度一般在0.1~5μm,用于简单的粗过滤,难以去除大分子有机物、无机盐,但能阻挡悬浮颗粒、部分微生物、大尺寸胶体穿透[ |
超滤膜污染 | 过滤精度在0.001~0.1μm,是一种利用压差的膜法分离技术,能够截留住分子量≥10000的有机物、全部胶体及微生物等[ | |
纳滤膜污染 | 过滤精度介于超滤和反渗透之间,运行压力为0.3~1.4MPa,能有效去除水中的二价及高价离子、无机盐及低分子有机化合物[ | |
反渗透膜污染 | 过滤精度为0.0001μm左右,能够截留大部分无机离子[ | |
可逆性[ | 可逆膜污染 | 由污染物颗粒所引起的浓差极化和表面附着等污染,可以通过水力冲洗、气泡冲刷等物理方式去除污染物,恢复透水能力[ |
不可逆膜污染 | 由溶解性有机物所引起的吸附、附着等污染只能采用化学方式才会恢复膜的初始性能[ | |
污染产生位置[ | 膜表面覆盖污染 | 一般是指胶体颗粒物质、大分子有机物等污染物在膜表面堆积形成的污染 |
膜内部堵塞污染 | 指部分小分子有机物通过堵塞和吸附的形式沉积于膜孔内部 | |
污染物种类[ | 颗粒物污染 | 悬浮颗粒及胶体颗粒在膜表面上聚集,主要造成膜孔堵塞以及后续形成滤饼层 |
有机污染 | 主要是蛋白质、多糖、脂质等有机聚合物在膜表面附着,且水体中的溶解性有机物发生浓度极化现象,在膜表面积累[ | |
无机污染 | 主要污染源是含钙和镁等的硫酸盐或碳酸盐,是盐溶液在膜表面浓缩的结果。水体中无机污染物的增加将会加速颗粒污染物、有机物等在膜表面的积累[ | |
微生物污染 | 主要是微生物及其代谢产物组成的生物粘泥黏附在膜表面,主要引起纳滤(NF)和反渗透(RO)膜污染[ |
类型[ | 常用手段 | 优点 | 缺点 | 能耗及成本 | 适用膜类型 | |||
---|---|---|---|---|---|---|---|---|
微滤膜[ | 超滤膜[ | 纳滤膜[ | 反渗透膜[ | |||||
混凝预处理 | 投加混凝剂(铝、铁、钛系 混凝剂等) | 高效去除有机污染物和颗粒物,降低工艺成本[ | 具有选择性,难以去除亲水性有机物[ | 运行成本低,但传统混凝剂混凝后会产生大量化学污泥,导致多余成本及能耗[ | ** | *** | ** | * |
吸附预处理 | 添加吸附材料(粉末活性炭、树脂、热化氧化铝颗粒等) | 高效去除低分子有机污染物,减少消毒副产物[ | 基建投资费用高、占地面积大[ | 基建投资费用高[ | *** | *** | ** | * |
氧化预处理 | 添加氧化剂(臭氧、液氯等)[ | 高效去除水体中的颜色及悬浮固体和微生物[ | 残留氧化剂会破坏膜材料[ | 运行成本低,但残留氧化剂会破坏膜材料[ | ** | *** | ** | * |
化学沉淀 预处理 | 投加化学药剂 | 去除水中有机物、无机物、操作简便[ | 造成二次污染、处理效率低[ | 成本低[ | ** | ** | *** | * |
电化学 预处理 | 添加电极[ | 去除难降解有机污染物,工艺灵活、环境友好型预处理法[ | 电催化效率低影响防污性能、电极易腐蚀[ | 成本较低,能耗较高[ | * | ** | * | * |
生物预处理 | 膜前培养微生物 | 有效去除“三致”前体物、绿色低碳[ | 不能去除难生物降解性物质;易堵塞滤头和曝气头[ | 成本低,低能耗[ | * | ** | ** | * |
组合工艺 | 各种预处理方法进行组合 | 最大限度发挥各个预处理方法的优点 | 工艺较复杂,各预处理方法之间可能存在互斥现象 | 根据组合工艺 不同,成本有较 大差异 | ** | ** | * | ** |
表2 不同膜前预处理技术的对比
类型[ | 常用手段 | 优点 | 缺点 | 能耗及成本 | 适用膜类型 | |||
---|---|---|---|---|---|---|---|---|
微滤膜[ | 超滤膜[ | 纳滤膜[ | 反渗透膜[ | |||||
混凝预处理 | 投加混凝剂(铝、铁、钛系 混凝剂等) | 高效去除有机污染物和颗粒物,降低工艺成本[ | 具有选择性,难以去除亲水性有机物[ | 运行成本低,但传统混凝剂混凝后会产生大量化学污泥,导致多余成本及能耗[ | ** | *** | ** | * |
吸附预处理 | 添加吸附材料(粉末活性炭、树脂、热化氧化铝颗粒等) | 高效去除低分子有机污染物,减少消毒副产物[ | 基建投资费用高、占地面积大[ | 基建投资费用高[ | *** | *** | ** | * |
氧化预处理 | 添加氧化剂(臭氧、液氯等)[ | 高效去除水体中的颜色及悬浮固体和微生物[ | 残留氧化剂会破坏膜材料[ | 运行成本低,但残留氧化剂会破坏膜材料[ | ** | *** | ** | * |
化学沉淀 预处理 | 投加化学药剂 | 去除水中有机物、无机物、操作简便[ | 造成二次污染、处理效率低[ | 成本低[ | ** | ** | *** | * |
电化学 预处理 | 添加电极[ | 去除难降解有机污染物,工艺灵活、环境友好型预处理法[ | 电催化效率低影响防污性能、电极易腐蚀[ | 成本较低,能耗较高[ | * | ** | * | * |
生物预处理 | 膜前培养微生物 | 有效去除“三致”前体物、绿色低碳[ | 不能去除难生物降解性物质;易堵塞滤头和曝气头[ | 成本低,低能耗[ | * | ** | ** | * |
组合工艺 | 各种预处理方法进行组合 | 最大限度发挥各个预处理方法的优点 | 工艺较复杂,各预处理方法之间可能存在互斥现象 | 根据组合工艺 不同,成本有较 大差异 | ** | ** | * | ** |
1 | NIDAL H, WRIGHT C J. Exploring the current state of play for cost-effective water treatment by membranes[J]. npj Clean Water, 2018, 8: 1-8. |
2 | LEE S, IHARA M, YAMASHITA N, et al. Improvement of virus removal by pilot-scale coagulation-ultrafiltration process for wastewater reclamation: effect of optimization of pH in secondary effluent[J]. Water Research, 2017, 114: 23-30. |
3 | SINCLAIR T R, ROBLES D, RAZA B, et al. Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551: 33-41. |
4 | 彭婷, 史载锋, 林强, 等. PVC超滤膜处理生活污水及膜污染控制研究[J]. 膜科学与技术, 2015, 35(2): 75-81. |
PENG Ting, SHI Zaifeng, LIN Qiang, et al. Research on PVC ultrafiltration membrane treatment of domestic sewage and membrane pollution control[J]. Membrane Science and Technology, 2015, 35(2): 75-81. | |
5 | LI K, WEN G, LI S, et al. Effect of pre-oxidation on low pressure membrane (LPM) for water and wastewater treatment: a review[J]. Chemosphere, 2019, 231: 287-300. |
6 | GAO Y H, QIN J, WANG Z W, et al. Backpulsing technology applied in MF and UF processes for membrane fouling mitigation: a review[J]. Journal of Membrane Science, 2019, 587: 117136. |
7 | PENG H W, TANG Q Q, TANG S H, et al. Surface modified polyamide nanofiltration membranes with high permeability and stability[J]. Journal of Membrane Science, 2019, 592: 117386. |
8 | YANG Y, QIAO S, ZHOU J T, et al. A novel porous-carbon-based hollow fiber membrane with electrochemical reduction mediated by in-situ hydroxyl radical generation for fouling control and water treatment[J]. Applied Catalysis B: Environmental, 2019, 255: 117772. |
9 | NINOMIYA Y, KIMURA K, SATO T, et al. High-flux operation of MBRs with ceramic flat-sheet membranes made possible by intensive membrane cleaning: tests with real domestic wastewater under low-temperature conditions[J]. Water Research, 2020, 181: 115881. |
10 | YIN X F, LI X F, HUA Z Z, et al. The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field[J]. Water Research, 2019, 171: 115452. |
11 | JIANG W B, XU X S, LIN L, et al. A pilot study of an electromagnetic field for control of rverse osmosis membrane fouling and scaling during brackish groundwater desalination[J]. Water, 2019, 11(5): 1015. |
12 | HONG S P, BAE T H, TAK T M, et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J]. Desalination, 2002, 143(3): 219-228. |
13 | GUO D, WANG H L, FU P B, et al. Diatomite precoat filtration for wastewater treatment: filtration performance and pollution mechanisms[J]. Chemical Engineering Research and Design, 2018, 137: 403-411. |
14 | BILAD M R, MEZOHEGYI G, DECLERCK P, et al. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors[J]. Water Research, 2012, 46(1): 63-72. |
15 | YUAN B B, LI P F, WANG P, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties[J]. Separation and Purification Technology, 2019, 224: 443-455. |
16 | WANG J C, TIAN J Y, GAO S S, et al. Dopamine triggered one step polymerization and codeposition of reactive surfactant on PES membrane surface for antifouling modification[J]. Separation and Purification Technology, 2020, 249: 117148. |
17 | HUANG H T, YU J Y, GUO H X, et al. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide[J]. Applied Surface Science, 2018, 427: 38-47. |
18 | HOU Z G, CAO X M, CAO L L, et al. The removal of phospholipid from crude rapeseed oil by enzyme-membrane binding[J]. Journal of Food Engineering, 2020, 280: 109910. |
19 | TRAN T, CHEN X Y, DOSHI S, et al. Grafting polysiloxane onto ultrafiltration membranes to optimize surfaceenergy and mitigate fouling[J]. Soft Matter, 2020, 16(21): 5044-5033. |
20 | 王毅凡. 多糖官能团诱导吸附性膜污染机制研究[D]. 西安: 西安理工大学, 2019. |
WANG Yifan. Study on the mechanism of polysaccharide functional group-induced adsorption membrane fouling[D]. Xi’an: Xi’an University of Technology, 2019. | |
21 | 郜玉楠, 王信之, 周历涛, 等. 混凝-超滤短流程工艺低温运行膜污染机理研究[J].水处理技术, 2018, 44(5): 119-122. |
GAO Yunan, WANG Xinzhi, ZHOU Litao, et al. Study on the mechanism of membrane fouling at low temperature during the coagulation-ultrafiltration short process[J]. Water Treatment Technology, 2018, 44(5): 119-122. | |
22 | SINGH G, SONG L F. Impact of feed water acidification with weak and strong acids on colloidal silica fouling in ultrafiltration membrane processes[J]. Water Research, 2008, 42(3): 707-713. |
23 | WANG Q, WEN Q X, CHEN Z Q. Long term effects of Pb2+ on the membrane fouling in a hydrolytic-anoxic-oxic-membrane bioreactor treating synthetic electroplating wastewater[J]. Chemosphere, 2019, 232: 430-438. |
24 | METZGER U, LE-CLECH P, STUETZ R M, et al. Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes[J]. Journal of Membrane Science, 2007, 301(1/2): 180-189. |
25 | 郝书云, 陆茵. 过滤模式和条件对PVC中空纤维膜过滤性能的影响[J]. 中国给水排水, 2017, 33(19): 85-89. |
HAO Shuyun, LU Yin. The effect of filtration mode and conditions on the filtration performance of PVC hollow fiber membranes[J]. China Water & Wastewater, 2017, 33(19): 85-89. | |
26 | GHAFFOUR N, QAMAR A. Membrane fouling quantification by specific cake resistance and flux enhancement using helical cleaners[J]. Separation and Purification Technology, 2020, 239: 116587. |
27 | 刘忠洲, 续曙光, 李锁定. 微滤、超滤过程中的膜污染与清洗[J]. 水处理技术, 1997, 23(4): 3-9. |
LIU Zhongzhou, XU Shuguang, LI Suoding. Membrane fouling and cleaning during microfiltration and ultrafiltration[J]. Water Treatment Technology, 1997, 23(4): 3-9. | |
28 | HERMANS P H, BREDËË H L. Principles of the mathematic treatment of constant-pressure filtration[J]. Journal of the Society of Chemical Industry, 1936, 55: 1-4. |
29 | GONSALVES V E. A critical investigation on the viscose filtration process[J]. Recueil des Travaux Chimiques des Pays-Bas, 1950, 69(7): 873-903. |
30 | GRACE H P. Structure and performance of filter media[J]. AIChE Journal, 1956, 2(3): 307-315. |
31 | HERMIA J. Constant pressure blocking filtration law application to powder-law non-Newtonian fluid[J]. Transactions of the Institution of Chemical Engineers, 1982, 60: 183-187. |
32 | HEIDARI S, AMIRINEJAD M, JAHANGIRIAN H. Investigation of fouling mechanisms using surface morphology and physicochemical membrane features[J]. Chemical Engineering & Technology, 2019, 42(6): 1310-1320. |
33 | KABSCH-KORBUTOWICZ M. Impact of pre-coagulation on ultrafiltration process performance[J]. Desalination, 2006, 194(1/2/3): 232-238. |
34 | 刘可. 超滤膜法微污染原水处理技术研究[D]. 青岛: 青岛理工大学, 2008. |
LIU Ke. Research on ultra-filtration membrane micro-polluted raw water treatment technology[D]. Qingdao: Qingdao University of Technology, 2008. | |
35 | HUANG H O, YOUNG T A, JACANGELO J G. Unified membrane fouling index for low pressure membrane filtration of natural waters: principles and methodology[J]. Environmental Science & Technology, 2008, 42(3): 714-720. |
36 | VARJANI S, JOSHI R, SRIVASTAVA V K, et al. Treatment of wastewater from petroleum industry: current practices and perspectives[J]. Environmental Science and Pollution Research, 2019, 27(22): 27127-27180. |
37 | 薛书雅, 高云霞.饮用水深度处理研究现状及发展对策[J]. 河北建筑工程学院学报, 2016, 34(3): 111-115. |
XUE Shuya, GAO Yunxia. Research status and development countermeasures of advanced drinking water treatment[J]. Journal of Hebei Institute of Civil Engineering, 2016, 34(3): 111-115. | |
38 | ZHAO X T, ZHANG R N, LIU Y N, et al. Antifouling membrane surface construction: chemistry plays a critical role[J]. Journal of Membrane Science, 2018, 551: 145-171. |
39 | BAGHERI M, MIRBAGHERI S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology, 2018, 258: 318-334. |
40 | CHANG H Q, LIANG H, QU F S, et al. Role of backwash water composition in alleviating ultrafiltration membrane fouling by sodium alginate and the effectiveness of salt backwashing[J]. Journal of Membrane Science, 2016, 499: 429-441. |
41 | NGUYEN T, RODDICK F A, FAN L H. Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures[J]. Membranes, 2012, 2(4): 804-840. |
42 | MENG F G, CHAE S R, DREWS A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material[J]. Water Research, 2009, 43(6): 1489-1512. |
43 | YANG Y, QIAO S, JIN R F, et al. A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling[J]. Water Research, 2019, 151: 54-63. |
44 | JEPSEN K L, BRAM M V, HANSEN L, et al. Online backwash optimization of membrane filtration for produced water treatment[J]. Membranes, 2019, 9(6): 68. |
45 | MATSUYAMA H, TERAMOTO M, NAKATANI R, et al. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. Ⅱ. Membrane morphology[J]. Journal of Applied Polymer Science, 1999, 74(1): 171-178. |
46 | QIU Y R, MATSUYAMA H, ZHONG H, et al. Effects of F127 on properties of PVB/F127 blend hollow fiber membrane via thermally induced phase separation[J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 207-216. |
47 | RAHMAN N A, MARUYAMA T, MATSUYAMA H. Performance of polyethersulfone/tetronic1307 hollow fiber membrane for drinking water production[J]. Journal of Applied Sciences in Environmental Sanitation, 2008, 3(1): 1-7. |
48 | DU L, QUAN X, FAN X F, et al. Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification[J]. Journal of Membrane Science, 2019, 596: 117613. |
49 | HUANG Z H, ZHANG X, WANG Y X, et al. Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling[J]. Environmental Research, 2020, 187: 109617. |
50 | LOH I H, MOODY R A, HUANG J C. Electrically conductive membranes: synthesis and applications[J]. Journal of Membrane Science, 1990, 50(1): 31-49. |
51 | BYU Y J, KIM J H, KIM S S. Surface modification of PVDF membranes for water treatment via hydrophilic thermal cross-linking method[J]. Desalination and Water Treatment, 2013, 51(25/26/27): 5371-5378. |
52 | 曹宏杰. PVDF-DCOIT复合中空纤维膜的制备与性能评价[D]. 大连: 大连理工大学, 2019. |
CAO Hongjie. Preparation and performance evaluation of PVDF-DCOIT composite hollow fiber membrane[D]. Dalian: Dalian University of Technology, 2019. | |
53 | 李丽. 直接超滤工艺处理微污染水源水的净水效能及膜污染控制研究[D]. 青岛: 青岛理工大学, 2018. |
LI Li. Research on water purification efficiency and membrane pollution control of direct ultrafiltration process for micro-polluted source water[D]. Qingdao: Qingdao Institute of Technology, 2018. | |
54 | XING J J, LIANG H, CHUAH C J, et al. Insight into Fe()/UV/chlorine pretreatment for reducing ultrafiltration (UF) membrane fouling: effects of different natural organic fractions and comparison with coagulation[J]. Water Research, 2019, 167: 115112. |
55 | HUANG W W, ZHOU W Z, LYU W Z, et al. Performance of PAC treatments on MF membrane fouling behavior and mechanism by various algogenic organic matter[J]. Desalination and Water Treatment, 2020, 190: 28-43. |
56 | KIM K J, JANG A. Effect of heated aluminum oxide particles dynamic membranes on polymeric and ceramic microfiltration membrane[J]. Desalination and Water Treatment, 2018, 135: 314-322. |
57 | ZHAO Y J, KITAJIMA R, SHIRASAKI N, et al. Precoating membranes with submicron super-fine powdered activated carbon after coagulation prevents transmembrane pressure rise: straining and high adsorption capacity effects[J]. Water Research, 2020, 177: 115757. |
58 | DEKA B J, GUO J, JEONG S, et al. Emerging investigator series: control of membrane fouling by dissolved algal organic matter using pre-oxidation with coagulation as seawater pretreatment[J]. Environmental Science: Water Research & Technology, 2020, 6(4): 935-944. |
59 | AMARAL M C S, PEREIRA H V, NANI E, et al. Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process[J]. Water Science and Technology, 2015, 72(2): 269-276. |
60 | DENG L J, NGO H H, GUO W S, et al. Pre-coagulation coupled with sponge-membrane filtration for organic matter removal and membrane fouling control during drinking water treatment[J]. Water Research, 2019, 157: 155-166. |
61 | LI K, LI S, SUN C, et al. Membrane fouling in integrated adsorption-UF system: effects of NOM and adsorbent properties[J]. Environmental Science: Water Research & Technology, 2019, 6(1): 78-86. |
62 | CAO D Q, HAO X D, WANG Z, et al. Membrane recovery of alginate in an aqueous solution by the addition of calcium ions: analyses of resistance reduction and fouling mechanism[J]. Journal of Membrane Science, 2017, 535: 312-321. |
63 | 陈禹志. 预氧化强化混凝-膜除藻工艺膜污染控制研究[J]. 膜科学与技术, 2016, 36(1): 104-108. |
CHEN Yuzhi. Study on membrane pollution control of pre-oxidation enhanced coagulation-membrane algae removal process[J]. Membrane Science and Technology, 2016, 36(1): 104-108. | |
64 | AL-HARAHSHEH M, HUSSAIN Y A, AL-ZOUBI H, et al. Hybrid precipitation-nanofiltration treatment of effluent pond water from phosphoric acid industry[J]. Desalination, 2017, 406: 88-97. |
65 | WANG Y L, JU L, XU F, et al. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water[J]. Environmental Research, 2020, 182: 109063. |
66 | GÖNDER Z B, BALCOĞLU G, VERGILI I, et al. An integrated electrocoagulation-nanofiltration process for carwash wastewater reuse[J]. Chemosphere, 2020, 253: 126713. |
67 | TANG P, LIU B, ZHANG Y, et al. Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis[J]. Chemical Engineering Journal, 2019, 392: 123743. |
68 | YIN Z L, WEN T C, LI Y, et al. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: the roles of Ca2+ and Mg2+[J]. Water Research, 2019, 171: 115437. |
69 | SHANG W, TIRAFERRI A, HE Q P, et al. Reuse of shale gas flowback and produced water: effects of coagulation and adsorption on ultrafiltration, reverse osmosis combined process[J]. Science of the Total Environment, 2019, 689: 47-56. |
70 | LI X, XU H, YANG Y, et al. Effect of flocculation time on fouling characteristics in coagulation-ultrafiltration process[J]. Jourmal of Beijing University of Technology, 2016, 42(6): 946-952. |
71 | SHEN X, GAO B Y, GUO K Y, et al. Application of composite flocculants for removing organic matter and mitigating ultrafiltration membrane fouling in surface water treatment: the role of composite ratio[J]. Environmental Science: Water Research & Technology, 2019, 5(12): 2242-2250. |
72 | 成小翔. 基于氧化的预处理方法对超滤膜污染及净水效能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
CHENG Xiaoxiang. Effect of oxidation-based pretreatment methods on ultrafiltration membrane pollution and water purification efficiency[D]. Harbin: Harbin Institute of Technology, 2017. | |
73 | MA Y Q, VELIOĞLU S, TANIS-KANBUR M B, et al. Mechanistic understanding of the adsorption of natural organic matter by heated aluminum oxide particles (HAOPs) via molecular dynamics simulation[J]. Journal of Membrane Science, 2019, 598: 117651. |
74 | LI C W, CHEN Y S. Fouling of UF membrane by humic substance: effects of molecular weight and powder-activated carbon (PAC) pre-treatment[J]. Desalination, 2004, 170(1): 59-17. |
75 | FILLOUX E, GALLARD H, CROUE J P. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling[J]. Water Research, 2012, 46(17): 5531-5540. |
76 | 王文华, 赵瑾, 司晓光, 等. 粉末活性炭预沉积去除藻类有机物及其对膜污染的影响[J]. 中国环境科学, 2018, 38(6): 2135-2143. |
WANG Wenhua, ZHAO Jin, SI Xiaoguang, et al. Pre-deposition of powdered activated carbon to remove algae organic matter and its effect on membrane pollution[J]. Chinese Journal of Environmental Science, 2018, 38(6): 2135-2143. | |
77 | LI K, LIANG H, QU F S, et al. Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: comparison of mesoporous adsorbent resin and powdered activated carbon[J]. Journal of Membrane Science, 2014, 471: 94-102. |
78 | YOU S H, TSENG D H, HSU W C. Effect and mechanism of ultrafiltration membrane fouling removal by ozonation[J]. Desalination, 2007, 202(1/2/3): 224-230. |
79 | FARAHBAKHSH K, SVRCEK C, GUEST R K, et al. A review of the impact of chemical pretreatment on low-pressure water treatment membranes[J]. Journal of Environmental Engineering and Science, 2004, 3(4): 237-253. |
80 | 夏生剑. 等离子体共振增强可见光驱动SnS2催化剂性能研究[D]. 杭州: 杭州电子科技大学, 2019. |
XIA Shengjian. Research on the performance of SnS2 catalyst driven by plasma resonance enhanced visible light[D]. Hangzhou: Hangzhou Dianzi University, 2019. | |
81 | 颜会全, 李静萍.电化学水处理技术发展综述[J]. 化工时刊, 2016, 30(6): 42-45. |
YAN Huiquan, LI Jingping. Review of the development of electrochemical water treatment technology[J]. Chemical Industry Times, 2016, 30(6): 42-45. | |
82 | ZHENG T L, WANG J, WANG Q H, et al. Research trends in electrochemical technology for water and wastewater treatment[J]. Applied Water Science, 2015, 7(1): 13-30. |
83 | JAGANNADH S N, MURALIDHARA H S. Electrokinetics methods to control membrane fouling[J]. Industrial & Engineering Chemistry Research, 1996, 35(4): 1133-1140. |
84 | HUANG J, WANG Z W, ZHANG J Y, et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5(1): 9268. |
85 | 周磊, 周坤.表面废水的处理方法综述[J]. 云南化工, 2020, 47(6): 21-22. |
ZHOU Lei, ZHOU Kun. Summarization of surface wastewater treatment methods[J]. Yunnan Chemical Industry, 2020, 47(6): 21-22. | |
86 | 张伟. 适用于微污染水源水的农村饮水浸没式超滤组合工艺研究[D]. 北京: 清华大学, 2011. |
ZHANG Wei. Research on rural drinking water submerged ultrafiltration combined process suitable for micro-polluted source water[D]. Beijing: Tsinghua University, 2011. | |
87 | 陈小春. 生物预处理-常规处理-膜处理工艺净水技术的研究[D]. 广州: 华南理工大学, 2011. |
CHEN Xiaochun. Biological pretreatment-conventional treatment-membrane treatment technology of water purification technology[D]. Guangzhou: South China University of Technology, 2011. | |
88 | AHMAD T, BELWAL T, LI L, et al. Utilization of wastewater from edible oil industry, turning waste into valuable products: a review[J]. Trends in Food Science & Technology, 2020, 99: 21-33. |
89 | 鄢忠森, 瞿芳术, 梁恒, 等. 超滤膜污染以及膜前预处理技术研究进展[J]. 膜科学与技术, 2014, 34(4): 108-114, 127. |
YAN Zhongsen, QU Fangshu, LIANG Heng, et al. A review on the ultrafitration membrane pollution and pretreatment technology[J]. Membrane Science and Technology, 2014, 34(4): 108-114, 127. | |
90 | ZHAO S, ZHANG P, ZOU Z J, et al. Polysaccharides derived from Enteromorpha prolifera for the removal of silver nanoparticle-humic acid contaminants by a coagulation-ultrafiltration process[J]. RSC Advances, 2020, 10(27): 16079-16087. |
91 | HUANG X, GAO B Y, SUN Y Y, et al. Effects of epichlorohydrin-dimethylamine on polytitanium chloride coagulation and membrane fouling in humic-kaolin water treatment: dosage, dose method and solution pH[J]. Separation and Purification Technology, 2017, 173: 209-217. |
92 | SU Z Y, LI X, YANG Y L, et al. Probing the application of a zirconium coagulant in a coagulation-ultrafiltration process: observations on organics removal and membrane fouling[J]. RSC Advances, 2017, 7(67): 42329-42338. |
93 | HANKINS N, PRICE R, DEBACHER N A. Process intensification during treatment of NOM-laden raw upland waters: control and impact of the pre-coagulation regime during ultra-filtration[J]. Desalination and Water Treatment, 2009, 8(1/2/3): 2-16. |
94 | LEI Z, YANG S M, LI X, et al. Revisiting the effects of powdered activated carbon on membrane fouling mitigation in an anaerobic membrane bioreactor by evaluating long-term impacts on the surface layer[J]. Water Research, 2019, 167: 115137. |
95 | WANG L F, BENJAMIN M M. HAOPs pretreatment to reduce membrane fouling: foulant identification, removal, and interactions[J]. Journal of Membrane Science, 2016, 515: 219-229. |
96 | GUTIERREZ A M, DZIUBLA T D, HILT J Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment[J]. Reviews on Environmental Health, 2017, 32(1/2): 111. |
97 | KOH L C, AHN W Y, CLARK M M. Selective adsorption of natural organic foulants by polysulfone colloids: effect on ultrafiltration fouling[J]. Journal of Membrane science, 2016, 281(1/2): 472-479. |
98 | BAUDIN I, CAMPOS C, LAÏNE J M. Removal of organic matter by the PAC-UF process: first two years of a full-scale application[J] . Water Science and Technology: Water Supply, 2001, 1(4): 253-263. |
99 | LOHWACHARIN J, OGUMA K, TAKIZAWA S. Use of carbon black nanoparticles to mitigate membrane fouling in ultrafiltration of river water[J]. Separation and Purification Technology, 2010, 72(1): 61-69. |
100 | 董秉直, 张庆元, 冯晶. 粉末活性炭预处理对超滤膜通量的影响[J]. 环境科学学报, 2008, 28(10): 1981-1987. |
DONG Bingzhi, ZHANG Qingyuan, FENG Jing. Influence of powered activated carbon (PAC) pretreatment on ultrafiltration membrane flux[J]. Journal of Environmental Science, 2008, 28(10): 1981-1987. | |
101 | CHEN Z Q, YANG B X, WEN Q X, et al. Evaluation of enhanced coagulation combined with densadeg-ultrafiltration process in treating secondary effluent: organic micro-pollutants removal, genotoxicity reduction, and membrane fouling alleviation[J]. Journal of Hazardous Materials, 2020, 396: 122697. |
102 | WANG H, PARK M, LIANG H, et al. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation[J]. Water Research, 2017, 125: 42-51. |
103 | ZHU H T, WEN X H, HUANG X, et al. Membrane fouling in the reclamation of secondary effluent with an ozone-membrane hybrid system[J]. Separation Science and Technology, 2019, 44(1): 121-130. |
104 | LIU J, HE K Y, ZHANG J X, et al. Coupling ferrate pretreatment and in-situ ozonation/ceramic membrane filtration for wastewater reclamation: water quality and membrane fouling[J]. Journal of Membrane Science, 2019, 590: 117310. |
105 | QU F S, DU X, LIU B, et al. Control of ultrafiltration membrane fouling caused by Microcystis cells with permanganate preoxidation: significance of in situ formed manganese dioxide[J]. Chemical Engineering Journal, 2015, 279: 56-65. |
106 | ZHANG X L, FAN L H, RODDICK F A. Effect of feedwater pre-treatment using UV/H2O2 for mitigating the fouling of a ceramic MF membrane caused by soluble algal organic matter[J]. Journal of Membrane Science, 2015, 493: 683-689. |
107 | CHENG X X, LI P J, LIU W C, et al. Activation of peroxymonosulfate by metal oxide nanoparticles for mitigating organic membrane fouling in surface water treatment[J]. Separation and Purification Technology, 2020, 246: 116935. |
108 | MARSZALEK A, PUSZCZALO E. Effect of photooxidation on nanofiltration membrane fouling during wastewater treatment from the confectionery industry[J]. Water, 2020, 12(3): 793. |
109 | XU T, CUI L, LI H H, et al. Effects of electrolytic oxidation for mitigating ultrafiltration membrane fouling caused by different natural organic matter fractions[J]. Environmental Science: Water Research & Technology, 2020, 6(3): 645-655. |
110 | AKAMATSU K, LU W, SUGAWARA T, et al. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field[J]. Water Research, 2010, 44(3): 825-830. |
111 | JIANG B, ZENG Q Z, HOU Y, et al. Impacts of long-term electric field applied on the membrane fouling mitigation and shifts of microbial communities in EMBR for treating phenol wastewater[J]. Science of the Total Environment, 2020, 716: 137139. |
112 | MA C Y, YI C, LI F, et al. Mitigation of membrane fouling using an electroactive polyether sulfone membrane[J]. Membranes, 2020, 10(2): 21. |
113 | SARKAR B, PAL S, GHOSH T B, et al. A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition[J]. Journal of Membrane Science, 2008, 311(1/2): 112-120. |
114 | 肖羽堂, 许建华. 生物接触氧化法净化微污染原水的机理研究[J]. 环境科学, 1999, 20(3): 86-89. |
XIAO Yutang, XU Jianhua. Study on the mechanism of biological contact oxidation to purify micro-polluted raw water[J]. Environmental Science, 1999, 20(3): 86-89. | |
115 | PELDSZUS S, BENECKE J, JEKEL M, et al. Direct biofiltration pretreatment for fouling control of ultrafiltration membranes[J]. Journal-American Water Works Association, 2012, 104(7): 45-46. |
116 | 汪恂, 宛海燕. 微污染水源水处理技术的现状与发展[J]. 山西建筑, 2008, 34(32): 20-21. |
WANG Xun, WAN Haiyan. Current status and development of micro-polluted source water treatment technology[J]. Shanxi Architecture, 2008, 34(32): 20-21. | |
117 | PRAMANIK B K, KAJOL A, SUJA F, et al. Effect of biological and coagulation pre-treatments to control organic and biofouling potential components of ultrafiltration membrane in the treatment of lake water[J]. Environmental Technology, 2016, 38(5): 579-587. |
118 | YU W Z, CAMPOS L C, GRAHAM N. Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water[J]. Water Research, 2016, 107: 83-92. |
119 | YU W Z, GRAHAM N, LIU T. Prevention of UF membrane fouling in drinking water treatment by addition of H2O2 during membrane backwashing[J]. Water Research, 2018, 149: 394-405. |
120 | CHIANG P C, CHANG E E, CHANG P C, et al. Effects of pre-ozonation on the removal of THM precursors by coagulation[J]. Science of the Total Environment, 2009, 407(21): 5735-5742. |
121 | CHANG E E, LIANG C H, KO Y W, et al. Effect of ozone dosage for removal of model compounds by ozone/GAC treatment[J]. Ozone: Science & Engineering, 2002, 24(5): 357-367. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[3] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[4] | 应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479. |
[5] | 胡锦文, 孟广源, 张之杰, 张宁, 张芯婉, 陈鹏, 李童, 刘勇弟, 张乐华. 人工智能在电化学水处理过程中的应用[J]. 化工进展, 2022, 41(S1): 497-506. |
[6] | 杨俊玲, 李翱, 陈悦, 朱光灿, 李淑萍, 陆勇泽. 铝系混凝剂减缓膜污染的红外光谱-多变量曲线分辨分析[J]. 化工进展, 2022, 41(9): 5132-5141. |
[7] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[8] | 廖兵, 胥雯, 叶秋月. 活化过碳酸盐及过氧碳酸氢盐在水处理领域中的研究进展[J]. 化工进展, 2022, 41(6): 3235-3248. |
[9] | 张惠宁, 石中玉, 肖彦奎, 张晓琴, 尹鑫, 田丽红. 3D打印制备三维石墨烯及其在水处理中的应用[J]. 化工进展, 2022, 41(5): 2231-2242. |
[10] | 钱光磊, 谢陈鑫, 滕厚开, 赵慧, 任春燕. 低膜面流速下曝气对管式膜水力特性及膜污染影响[J]. 化工进展, 2022, 41(5): 2277-2284. |
[11] | 唐娇娇, 谢军祥, 陈重军, 余成, 陈德超. 城镇污水处理厂碳中和技术及案例[J]. 化工进展, 2022, 41(5): 2662-2671. |
[12] | 李正, 牛静东, 何广泽, 张兰河, 张海丰. PVDF-PFTS/SiO2膜制备及抗混合污染性能[J]. 化工进展, 2022, 41(5): 2713-2721. |
[13] | 李海涛, 汪东. 精对苯二甲酸生产废水处理与CO2协同利用技术的实践与展望[J]. 化工进展, 2022, 41(3): 1132-1135. |
[14] | 徐南平, 赵静, 刘公平. “双碳”目标下膜技术发展的思考[J]. 化工进展, 2022, 41(3): 1091-1096. |
[15] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |