化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1495-1505.DOI: 10.16085/j.issn.1000-6613.2020-0806
收稿日期:
2020-05-12
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
杨蒙蒙
作者简介:
杨蒙蒙(1996—),女,硕士研究生,主要从事钾离子电池材料与界面的相关研究。E-mail:基金资助:
Received:
2020-05-12
Online:
2021-03-05
Published:
2021-03-17
Contact:
YANG Mengmeng
摘要:
钾离子电池因其能量密度高、钾储量丰富、成本低等优势而成为当前储能器件领域一个新的研究热点。钾离子可以在商品化石墨负极材料中嵌入与脱出,这对于钾离子电池未来的产业化发展具有重要意义。但目前石墨负极存在体积膨胀率较大、容量衰减快、倍率性能低等问题。近年来,为寻找适宜嵌钾的材料与抑制膨胀的方法,越来越多的电极材料体系被开发出来。其中生物质碳材料因制备工艺简单、成本低廉和环保等优点被广泛研究。本文总结了钾离子电池生物质碳材料的最新研究进展;分析了存在于碳基材料的两种储钾机制及各自对电化学性能的影响,并对一些表现出优异电化学性能的生物质碳材料的制备方法及电化学性能做出扼要综述;在此基础上,对钾离子电池的下一步研究进行展望与总结。
中图分类号:
杨蒙蒙, 姚卫棠. 生物质碳材料在钾离子电池负极材料中的应用[J]. 化工进展, 2021, 40(3): 1495-1505.
YANG Mengmeng, YAO Weitang. Application of biomass carbonmaterial in anodematerial of potassium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1495-1505.
原材料 | 制备方法 | 电流密度/mA·g-1 | 循环次数 | 比容量/mA·h·g-1 | 参考文献 |
---|---|---|---|---|---|
脱水棉 | 酸处理,高温碳化 | 200 | 150 | 240 | [ |
橡木 | 两步碳化 | 20 | — | 223 | [ |
灵芝孢子粉 | 高温碳化 | 50 | 50 | 407 | [ |
土豆 | 两步碳化 | 100 | 100 | 247.8 | [ |
丝瓜 | 碱处理,高温碳化 | 100 | 200 | 150 | [ |
细菌纤维素 | 冷冻干燥,高温碳化 | 1000 | 2000 | 158 | [ |
甲壳素 | 高温碳化 | 55.8 | 100 | 215.2 | [ |
海产品废物 | 高温碳化 | 504 | 4000 | 180 | [ |
核桃隔膜 | 尿素氮掺杂,高温碳化 | 1000 | 1000 | 119.9 | [ |
竹子 | 硫掺杂,高温碳化 | 2000 | 300 | 203.8 | [ |
表1 生物质碳材料作为钾离子电池负极材料的电化学性能
原材料 | 制备方法 | 电流密度/mA·g-1 | 循环次数 | 比容量/mA·h·g-1 | 参考文献 |
---|---|---|---|---|---|
脱水棉 | 酸处理,高温碳化 | 200 | 150 | 240 | [ |
橡木 | 两步碳化 | 20 | — | 223 | [ |
灵芝孢子粉 | 高温碳化 | 50 | 50 | 407 | [ |
土豆 | 两步碳化 | 100 | 100 | 247.8 | [ |
丝瓜 | 碱处理,高温碳化 | 100 | 200 | 150 | [ |
细菌纤维素 | 冷冻干燥,高温碳化 | 1000 | 2000 | 158 | [ |
甲壳素 | 高温碳化 | 55.8 | 100 | 215.2 | [ |
海产品废物 | 高温碳化 | 504 | 4000 | 180 | [ |
核桃隔膜 | 尿素氮掺杂,高温碳化 | 1000 | 1000 | 119.9 | [ |
竹子 | 硫掺杂,高温碳化 | 2000 | 300 | 203.8 | [ |
1 | ADEKOYA David, CHEN Hao, Huiying HOH, et al. Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage[J]. ACS Nano, 2020, 14(4): 5027-5035. |
2 | ADEKOYA David, LI Meng, HANKEL Marlies, et al. Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage[J]. Energy Storage Materials, 2020, 25: 495-501. |
3 | AN Yongling, TIAN Yuan, LI Yuan, et al. Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(38): 21966-21975. |
4 | ZHANG Chengzhi, HAN Fei, WANG Fei, et al. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage[J]. Energy Storage Materials, 2020, 24: 208-219. |
5 | CHANG Xingqi, ZHOU Xiaolong, Xuewu OU, et al. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage[J]. Advanced Energy Materials, 2019, 9(47): 1902672. |
6 | YI Zhibin, LIU Ying, LI Yingzhi, et al. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high-performance anode for potassium-ion batteries[J]. Small, 2020, 16(2): 1905301. |
7 | CHU Jianhua, WANG Wei, YU Qiyao, et al. Open ZnSe/C nanocages: multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(2): 779-788. |
8 | CUI Yongpeng, LIU Wei, WANG Xia, et al. Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K+ storage performance[J]. ACS Nano, 2019, 13(10): 11582-11592. |
9 | FENG Wenting, CUI Yongpeng, LIU Wei, et al. Rigid-flexible coupling carbon skeleton and potassium-carbonate-dominated solid electrolyte interface achieving superior potassium-ion storage[J]. ACS Nano, 2020, 14(4): 4938-4949. |
10 | WU Xuan, CHEN Yanli, XING Zheng, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. |
11 | ZHANG Zili, JIA Baorui, LIU Luan, et al. Hollow multihole carbon bowls: a stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries[J]. ACS Nano, 2019, 13(10): 11363-11371. |
12 | HAN Jun, ZHU Kunjie, LIU Pei, et al. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(44): 25268-25273. |
13 | YANG Chao, Fan LYU, ZHANG Yelong, et al. Confined Fe2VO4 subset of nitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage[J]. Advanced Energy Materials, 2019, 9(46): 1902674. |
14 | HE Bing, MAN Ping, ZHANG Qichong, et al. Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries[J]. Small, 2019, 15(52): 1905115. |
15 | HE Hanna, HUANG Dan, GAN Qingmeng, et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage[J]. ACS Nano, 2019, 13(10): 11843-11852. |
16 | YI Yuyang, SUN Zhongti, LI Chao, et al. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors[J]. Advanced Functional Materials, 2020, 30(4): 1903878. |
17 | HE Xiaodong, LIAO Jiaying, WANG Shuo, et al. From nanomelting to nanobeads: nanostructured SbxBi1-x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(47): 27041-27047. |
18 | HONG Wanwan, ZHANG Yu, YANG Li, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage[J]. Nano Energy, 2019, 65: 104038. |
19 | HU Junxian, XIE Yangyang, ZHOU Xiaolu, et al. Engineering hollow porous carbon-sphere-confined MoS2 with expanded (002) planes for boosting potassium-ion storage[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1232-1240. |
20 | HUANG Huijuan, XU Rui, FENG Yuezhan, et al. Sodium/potassium-ion batteries: boosting the rate capability and cycle life by combining morphology, defect and structure engineering[J]. Advanced Materials, 2020, 32(8): 1904320. |
21 | Changheum JO, Jae Hyeon JO, CHOI Ji Ung, et al. Oxalate-based high-capacity conversion anode for potassium storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3743-3750. |
22 | Jisung LEE, KIM Seongseop, PARK Jae Hyuk, et al. A small-strain niobium nitride anode with ordered mesopores for ultra-stable potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(6): 3119-3127. |
23 | LEI Yu, HAN Da, DONG Jiahui, et al. Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries[J]. Energy Storage Materials, 2020, 24: 319-328. |
24 | LI Dongjun, CHENG Xiaolong, XU Rui, et al. Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19929-19938. |
25 | LIU Meiqi, CHANG Limin, WANG Jie, et al. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors[J]. Journal of Power Sources, 2020, 469: 228415. |
26 | 刘燕晨, 黄斌, 邵奕嘉, 等. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340. |
LIU Yanchen, HUANG Bin, SHAO Yijia, et al. Potassium-ion battery and its recent research progress[J]. Progress in Chemistry, 2019, 31(9): 1329-1340. | |
27 | 张鼎, 燕永旺, 史文静, 等. 钾离子电池研究进展[J]. 化工进展, 2018, 37(10): 3772-3780. |
ZHANG Ding, YAN Yongwang, SHI Wenjing, et al. Research progress of potassium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3772-3780. | |
28 | LIN Xiuyi, LIU Yizhe, TAN Hong, et al. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316-323. |
29 | LIU Yuting, XIAO Yaoyao, LIU Fusheng, et al. Controlled building of mesoporous MoS2@MoO2-doped magnetic carbon sheets for superior potassium ion storage[J]. Journal of Materials Chemistry A, 2019, 7(47): 26818-26828. |
30 | LIU Zhiwei, HAN Kun, LI Ping, et al. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries[J]. Nano-Micro Letters, 2019, 11(1): 96. |
31 | LIU Zhaomeng, WANG Jue, JIA Xinxin, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642. |
32 | LU Gaofei, WANG Huanlei, ZHENG Yulong, et al. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium- and potassium-ion storage[J]. Electrochimica Acta, 2019, 319: 541-551. |
33 | LU Jian, WANG Changlai, YU Haolei, et al. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage[J]. Advanced Functional Materials, 2019, 29(49): 1906126. |
34 | NAYLOR Andrew J, CARBONI Marco, VALYO Mario, et al. Interfacial reaction mechanisms on graphite anodes for K-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45636-45645. |
35 | YI Zheng, JIANG Song, TIAN Jie, et al. Amidation-dominated re-assembly strategy for single-atom design/nano-engineering: constructing Ni/S/C nanotubes with fast and stable K-storage[J]. Angewandte Chemie: International Edition, 2020, 59(16): 6459-6465. |
36 | QIAN Yong, JIANG Song, LI Yang, et al. In situ revealing the electroactivity of P—O and P—C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901676. |
37 | QIU Hailong, ZHAO Lina, ASIF Muhammad, et al. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries[J]. Energy & Environmental Science, 2020, 13(2): 571-578. |
38 | QIU Zhenping, ZHAO KaiXiang, LIU Jiaming, et al. Nitrogen-doped mesoporous carbon as an anode material for high performance potassium-ion batteries[J]. Electrochimica Acta, 2020, 340: 135947. |
39 | RAJAGOPALAN Ranjusha, TANG Yougen, JI Xiaobo, et al. Advancements and challenges in potassium ion batteries: a comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. |
40 | RUAN Jiafeng, MO Fangjie, CHEN Ziliang, et al. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors[J]. Advanced Energy Materials, 2020, 10(15): 1904045. |
41 | SANG Zhiyuan, SU Dong, WANG Jinsong, et al. Bi-continuous nanoporous carbon sphere derived from SiOC as high-performance anodes for PIBs[J]. Chemical Engineering Journal, 2020, 381: 122677. |
42 | ZHAO Yuanxin, REN Xiaochuan, XING Zhenjiang, et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage[J]. Small, 2020, 16(2): 1905789. |
43 | LIANG Shuaitong, SHI Haiting, YU Zhenjiang, et al. Uncovering the design principle of conversion-based anode for potassium ion batteries via dimension engineering[J]. Energy Storage Materials, 2021, 34: 536-544. |
44 | JIAN Zelang, LUO Wei, JI Xiulei. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
45 | SUN Qing, LI Deping, CHENG Jun, et al. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage[J]. Carbon, 2019, 155: 601-610. |
46 | TAN Huiteng, FENG Yuezhan, RUI Xianhong, et al. Metal chalcogenides: paving the way for high-performance sodium/potassium-ion batteries[J]. Small Methods, 2020, 4(1): 1900563. |
47 | TAO Lin, YANG Yunpeng, WANG Huanlei, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms[J]. Energy Storage Materials, 2020, 27: 212-225. |
48 | ZHANG Wenli, CAO Zhen, WANG Wenxi, et al. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity[J]. Angewandte Chemie: International Edition, 2020, 59(11): 4448-4455. |
49 | TIAN Zhihong, CHUI Ningbo, LIAN Ruqian, et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage[J]. Energy Storage Materials, 2020, 27: 591-598. |
50 | YANG Jinlin, JU Zhicheng, JIANG Yong, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, 30(4): 1700104. |
51 | WANG Bo, YUAN Fei, WANG Wei, et al. A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage[J]. Journal of Materials Chemistry A, 2019, 7(45): 25845-25852. |
52 | WANG Yaxiong, GAO Xiang, LI Lingchang, et al. High-capacity K-storage operational to-40 degrees C by using RGO as a model anode material[J]. Nano Energy, 2020, 67: 104248. |
53 | WANG Yanning, LI Yinshi. Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/ K-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(8): 4274-4282. |
54 | WANG Zhiyuan, DONG Kangze, WANG Dan, et al. Constructing N-doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries[J]. Chemical Engineering Journal, 2020, 384: 123327. |
55 | WU Xuan, CHEN Yanli, XING Zheng, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. |
56 | ZHANG Jingyuan, CUI Peixin, GU Ying, et al. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage[J]. Advanced Materials Interfaces, 2019, 6(22): 1901066. |
57 | HE Xiaodong, LIAO Jiaying, TANG Zhongfeng, et al. Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries[J]. Journal of Power Sources, 2018, 396: 533-541. |
58 | S J Richard PRABAKAR, HAN Su Cheol, PARK Chunguk, et al. Spontaneous formation of interwoven porous channels in hard-wood-based hard-carbon for high-performance anodes in potassium-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(9): 2012-2016. |
59 | YANG Mengmeng, DAI Jinyan, HE Mingyi, et al. Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 567: 256-263. |
60 | CAO Wei, ZHANG Erjin, WANG Jue, et al. Potato derived biomass porous carbon as anode for potassium ion batteries[J]. Electrochimica Acta, 2019, 293: 364-370. |
61 | LI Hongyan, CHENG Zheng, ZHANG Qing, et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano Letters, 2018, 18(11): 7407-7413. |
62 | WU Zhenrui, WANG Liping, HUANG Jie, et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries[J]. Electrochimica Acta, 2019, 306: 446-453. |
63 | SHAN Jie, WANG Jianjiao, KIEKENS Paul, et al. Effect of co-activation of petroleum coke and artemisia hedinii on potassium loss during activation and its promising application in anode material of potassium-ion batteries[J]. Solid State Sciences, 2019, 92: 96-105. |
64 | HAO Rui, LAN Hao, KUANG Chengwei, et al. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers[J]. Carbon, 2018, 128: 224-230. |
65 | CHEN Chaoji, WANG Zhenggang, ZHANG Bao, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries[J]. Energy Storage Materials, 2017, 8: 161-168. |
66 | GAO Chenglin, WANG Qing, LUO Shaohua, et al. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum[J]. Journal of Power Sources, 2019, 415: 165-171. |
67 | TIAN Sheng, GUAN Dongcai, LU Jing, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries[J]. Journal of Power Sources, 2020, 448: 227572. |
[1] | 陈雪, 刘书林, 和凤祥, 吕晗, 武全宇, 王浩, 屈滨. 基于煤系重质芳烃制备负极材料改性剂及性能[J]. 化工进展, 2022, 41(12): 6461-6468. |
[2] | 彭得群. CuGeO3/泡沫镍负极材料的制备及其电化学性能[J]. 化工进展, 2022, 41(1): 343-349. |
[3] | 沈牧原, 邵奕嘉, 黄斌, 刘燕晨, 廖世军. 普鲁士蓝类正极材料在钾离子电池中的应用研究进展[J]. 化工进展, 2021, 40(S2): 279-289. |
[4] | 俞明浩, 顾梦旋, 吴正颖, 孙林兵. 锰氧化物的合成及在锂离子电池中的应用进展[J]. 化工进展, 2021, 40(9): 5012-5028. |
[5] | 胡思思, 孙丽芝, 张迪, 王波. Fe掺杂宣纸基碳纤维材料的储锂性能[J]. 化工进展, 2021, 40(10): 5370-5377. |
[6] | 王振帅, 邢宝林, 韩学锋, 曾会会, 侯磊, 郭晖, 张传祥, 岳志航. 煤沥青基微晶炭的制备及其储锂性能[J]. 化工进展, 2021, 40(1): 313-323. |
[7] | 魏润宏, 徐汝辉, 胡学军, 张克宇, 张业男, 梁风, 姚耀春. SnO2-C复合负极材料的维度设计用于锂、钠离子电池[J]. 化工进展, 2020, 39(7): 2677-2686. |
[8] | 张利辉, 徐宇兴, 刘振法, 魏爱佳, 李文. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019, 38(02): 949-955. |
[9] | 张鼎, 燕永旺, 史文静, 赵小敏, 刘世斌, 王晓敏. 钾离子电池研究进展[J]. 化工进展, 2018, 37(10): 3772-3780. |
[10] | 张英杰, 朱子翼, 董鹏, 赵少博, 章艳佳, 杨成云, 杨城沣, 韦克毅, 李雪. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
[11] | 王仙宁, 凌锋, 潘薇, 刘会景. 锂离子电池负极材料中国专利分析[J]. 化工进展, 2016, 35(01): 336-339. |
[12] | 袁华堂,王一菁,闫 超,宋大卫. 新型稀土高性能储氢合金研究进展[J]. 化工进展, 2012, 31(02 ): 253-258. |
[13] | 谢文俊,何雨石,廖小珍,马紫峰. 不同形貌Li4Ti5O12负极材料的研究进展[J]. 化工进展, 2011, 30(10): 2220-. |
[14] | 魏 巍,王久林,杨 军,努丽燕娜. 锂离子电池锡基负极材料的研究进展 [J]. 化工进展, 2010, 29(1): 80-. |
[15] | 唐致远,高 飞,韩 彬. 锂离子电池负极材料Li4Ti5O12的研究进展 [J]. 化工进展, 2006, 25(2): 159-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |