化工进展 ›› 2021, Vol. 40 ›› Issue (1): 313-323.DOI: 10.16085/j.issn.1000-6613.2020-0496
王振帅1(), 邢宝林1,2(), 韩学锋2, 曾会会1, 侯磊1, 郭晖1, 张传祥1,2, 岳志航1
收稿日期:
2020-04-01
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
邢宝林
作者简介:
王振帅(1995—),男,硕士研究生,研究方向为矿产资源加工利用。E-mail:基金资助:
Zhenshuai WANG1(), Baolin XING1,2(), Xuefeng HAN2, Huihui ZENG1, Lei HOU1, Hui GUO1, Chuanxiang ZHANG1,2, Zhihang YUE1
Received:
2020-04-01
Online:
2021-01-05
Published:
2021-01-12
Contact:
Baolin XING
摘要:
以工业副产物煤沥青(coal tar pitch, CTP)为原料,采用高温炭化法制备煤沥青基微晶炭,利用XRD、Raman光谱、SEM、TEM和XPS等手段对其微观结构和表面化学性质进行表征,并探究微晶炭用作锂离子电池负极材料的储锂特性。结果表明,煤沥青经不同温度(800~1100℃)炭化处理后可制备出石墨微晶和无定形炭共存的微晶炭。炭化温度是影响煤沥青基微晶炭的微晶片层、纳米孔道和结构缺陷等微观结构特征和表面化学性质的重要因素。当炭化温度为800℃时,煤沥青基微晶炭CTP-800具有较为有序的石墨微晶片层和丰富的纳米孔道、结构缺陷等无定形炭,且两者有机结合,相互镶嵌,构筑成三维网络结构,同时炭基体表面含有适量氧/氮官能团。该微晶炭用作锂离子电池负极材料时具有优异的储锂特性,在50mA/g电流密度下可逆容量可达305mA·h/g,1000mA/g大电流密度下仍可维持在174mA·h/g,经100次循环后可逆容量保持率超过99.0%,显示出良好的倍率性能和优异的循环稳定性,是一种较为理想的锂离子电池负极材料。煤沥青基微晶炭 CTP-800优异的储锂特性与其炭基体中含有石墨微晶片层与纳米孔道、结构缺陷等无定形炭和炭表面富含氧/氮官能团等因素密切相关。
中图分类号:
王振帅, 邢宝林, 韩学锋, 曾会会, 侯磊, 郭晖, 张传祥, 岳志航. 煤沥青基微晶炭的制备及其储锂性能[J]. 化工进展, 2021, 40(1): 313-323.
Zhenshuai WANG, Baolin XING, Xuefeng HAN, Huihui ZENG, Lei HOU, Hui GUO, Chuanxiang ZHANG, Zhihang YUE. Preparation of coal tar pitch-based microcrystal carbons and their lithium storage properties[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 313-323.
工业分析/% | XPS元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCdaf | C | O | N | S | |
0.37 | 0.21 | 64.23 | 35.77 | 92.89 | 4.01 | 2.51 | 0.59 |
表1 煤沥青的工业分析与XPS元素分析
工业分析/% | XPS元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCdaf | C | O | N | S | |
0.37 | 0.21 | 64.23 | 35.77 | 92.89 | 4.01 | 2.51 | 0.59 |
样品编号 | d002/nm | La/nm | Lc/nm | Lc/d002 |
---|---|---|---|---|
CTP-800 | 0.356 | 16.24 | 7.95 | 22.3 |
CTP-900 | 0.353 | 16.19 | 7.92 | 22.4 |
CTP-1000 | 0.351 | 14.97 | 7.32 | 20.9 |
CTP-1100 | 0.349 | 14.68 | 7.18 | 20.6 |
表2 煤沥青基微晶炭的微晶结构参数
样品编号 | d002/nm | La/nm | Lc/nm | Lc/d002 |
---|---|---|---|---|
CTP-800 | 0.356 | 16.24 | 7.95 | 22.3 |
CTP-900 | 0.353 | 16.19 | 7.92 | 22.4 |
CTP-1000 | 0.351 | 14.97 | 7.32 | 20.9 |
CTP-1100 | 0.349 | 14.68 | 7.18 | 20.6 |
样品编号 | 放电比容量 /mA·h·g-1 | 充电比容量 /mA·h·g-1 | 不可逆比容量 /mA·h·g-1 | 库仑 效率/% |
---|---|---|---|---|
CTP-800 | 500 | 320 | 180 | 64.1 |
CTP-900 | 442 | 289 | 153 | 65.3 |
CTP-1000 | 370 | 276 | 94 | 74.5 |
CTP-1100 | 345 | 251 | 96 | 72.6 |
表3 煤沥青基微晶炭负极材料的首次充放电比容量和库仑效率
样品编号 | 放电比容量 /mA·h·g-1 | 充电比容量 /mA·h·g-1 | 不可逆比容量 /mA·h·g-1 | 库仑 效率/% |
---|---|---|---|---|
CTP-800 | 500 | 320 | 180 | 64.1 |
CTP-900 | 442 | 289 | 153 | 65.3 |
CTP-1000 | 370 | 276 | 94 | 74.5 |
CTP-1100 | 345 | 251 | 96 | 72.6 |
1 | 闻雷, 陈静, 罗洪泽, 等. 石墨烯在柔性锂离子电池中的应用及前景[J]. 科学通报, 2015, 60(7): 630-644. |
WEN Lei, CHEN Jing, LUO Hongze, et al. Application and prospect of graphene in flexible lithium ion batteries[J]. Chinese Science Bulletin, 2015, 60(7): 630-644. | |
2 | LIU C, XIAO N, WANG Y W, et al. Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries[J]. Fuel Processing Technology, 2018, 180: 173-179. |
3 | 李玉龙, 刘瑞峰, 周颖, 等. 锂离子电池硬碳负极材料的研究进展[J]. 材料导报, 2017, 31(29): 236-240. |
LI Yulong, LIU Ruifeng, ZHOU Ying, et al. Research progress on hard carbon anode materials for lithium ion batteries[J]. Materials Review, 2017, 31(29): 236-240. | |
4 | 梁初, 许浩辉, 梁升, 等. 锂离子电池负极储锂材料的研究进展[J]. 材料导报, 2015, 29(11): 9-16. |
LIANG Chu, XU Haohui, LIANG Sheng, et al. Research progress of lithium storage materials for lithium ion batteries[J]. Materials Review, 2015, 29(11): 9-16. | |
5 | ULLAH A, MAJID A, RANI N. A review on first principles based studies for improvement of cathode material of lithium ion batteries [J]. Journal of Energy Chemistry, 2018, 27(1): 219-237. |
6 | XING B L, ZHANG C T, CAO Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology, 2018, 172: 162-171. |
7 | 韩飞, 陆安慧, 李文翠. 结构可控的炭基材料在锂离子电池中的应用[J]. 化学进展, 2012, 24(12): 2443-2456. |
HAN Fei, LU Anhui, LI Wencui. Application of carbon based materials with controllable structure in lithium ion batteries[J]. Progress in Chemistry, 2012, 24(12): 2443-2456. | |
8 | ZHANG D W, WANG G, XU L, et al. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries[J]. Applied Surface Science, 2018, 451: 298-305. |
9 | MO R W, ROONEY D, SUN K N, et al.3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery[J]. Nature Communications, 2017, 8: 13949. |
10 | GAO F, GENG C, XIAO N, et al. Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries[J]. Carbon, 2018, 139: 1085-1092. |
11 | 郭佳欢. 石墨开发利用现状研究与供需展望[D]. 北京: 中国地质 大学, 2016. |
GUO Jiahuan. Research on the development and utilization of graphite and prospects of supply and demand[D]. Beijing: China University of Geosciences, 2016. | |
12 | 王海洋, 朱洪喆, 王守凯, 等. 煤沥青基多孔炭材料的研究进展[J]. 功能材料, 2019, 50(8): 8032-8039. |
WANG Haiyang, ZHU Hongzhe, WANG Shoukai, et al. Research progress of coal-tar pitch based porous carbon materials[J]. Functional Materials, 2019, 50(8): 8032-8039. | |
13 | 肖南, 邱介山. 煤沥青基功能材料的研究现状及前景[J]. 化工进展, 2016, 35(6): 1804-1811. |
XIAO Nan, QIU Jieshan. Research status and prospect of coal pitch based functional carbon materials[J]. Chemical Industry Engineering Progress, 2016, 35 (6): 1804-1811. | |
14 | CONCHESO A, SANTAMARIA R, MENENDEZ R, et al. Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries[J]. Electrochimica Acta, 2006, 52(3): 1281-1289. |
15 | 佟令文. 沥青聚合条件对炭材料电化学性能的影响[D]. 北京: 北京化工大学, 2017. |
TONG Lingwen. Effect of asphalt polymerization conditions on electrochemical properties of carbon[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
16 | 苗艳丽. 结构调控碳基钠离子电池负极材料的研究[D]. 天津: 天津大学, 2017. |
MIAO Yanli. Structure-controlled carbon as anodematerials for sodium ion batteries[D]. Tianjin: Tianjin University, 2017. | |
17 | HUANG S L, GUO H J, LI X H, et al. Carbonization and graphitization of pitch applied for anode materials of high power lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(5): 1401-1408. |
18 | ZHOU Q, ZHAO Z B, ZHANG Y T, et al. Graphene sheets from graphitized anthracite coal: preparation, decoration, and application[J]. Energy & Fuels, 2012, 26(8): 5186-5192. |
19 | 刘钦甫, 袁亮, 李阔, 等. 不同变质程度煤系石墨结构特征[J]. 地球科学, 2018, 43(5): 1663-1669. |
LIU Qinfu, YUAN Liang, LI Kuo, et al. Structural characteristics of graphite in coal measures of different metamorphic degrees[J]. Geoscience, 2008, 43(5): 1663-1669. | |
20 | BISCOE J, WARREN B E. An X-Ray study of carbon black[J]. Journal of Applied Physics, 1942, 13(6): 364-371. |
21 | AN G, KIM H, AHN H. Surface functionalization of nitrogen-doped carbon derived from protein as anode material for lithium storage[J]. Applied Surface Science, 2019, 463: 18-26. |
22 | 董伟, 杨绍斌, 沈丁, 等. 石油沥青和葡萄糖热解炭的可逆储钠性能研究[J]. 新型炭材料, 2017, 32(3): 227-233. |
DONG Wei, YANG Shaobin, SHEN Ding, et al. Reversible sodium storage performance of petroleum asphalt and glucose pyrolysis carbon[J]. New Carbon Materials, 2017, 32(3): 227-233. | |
23 | LI Z W, ZHONG J L, CHEN N N, et al. Template-assisted preparation and lithium storage performance of nitrogen doped porous carbon sheets [J]. Acta Chimica Sinica, 2018, 76(3): 209-214. |
24 | 邢宝林, 张传涛, 谌伦建, 等. 高性能煤基石墨负极材料的制备及其储锂特性研究[J]. 中国矿业大学学报, 2019, 48(5): 1133-1142. |
XING Baolin,ZHANG Chuantao,CHEN Lunjian,et al. Preparation of high performance coal-based graphite anode materials and their lithium storage properties[J]. Journal of China University of Mining and Technology, 2019, 48(5): 1133-1142. | |
25 | 王邓军, 王艳莉, 詹亮, 等. 锂离子电池负极材料用针状焦的石墨化机理及其储锂行为[J]. 无机材料学报, 2011, 26(6): 619-624. |
WANG Dengjun, WANG Yanli, ZHAN Liang, et al. Graphitization mechanism and lithium storage behavior of needle coke for cathode materials of lithium ion battery[J]. Chinese Journal of Inorganic Materials, 2011, 26(6): 619-624. | |
26 | XING B L, ZHANG C T, CAO Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology, 2018, 172: 162-171. |
27 | YAN Y R, LI C L, LIU C, et al. Bundled and dispersed carbon nanotube assemblies on graphite superstructures as free-standing lithium-ion battery anodes[J]. Carbon, 2019, 142: 238-244. |
28 | XING B L, ZENG H H, HUANG G X, et al. Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications[J]. Journal of Alloys and Compounds, 2019, 779: 202-211. |
29 | YUE X Y, SUN W, ZHANG J, et al. Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance[J]. Journal of Power Sources, 2016, 331: 10-15. |
30 | 宋冉冉. 层次孔结构炭材料的设计合成及其电化学性能的研究[D]. 北京: 北京化工大学, 2014. |
SONG Ranran. Design, synthesis and electrochemical properties of layered porous carbon materials [D]. Beijing: Beijing University of Chemical Technology, 2014. | |
31 | 朱春野, 许敏, 曹高萍, 等. 石油焦原料对微晶炭结构和性能的影响[J]. 功能材料, 2007, 38(S1): 677-680. |
ZHU Chunye, XU Min, CAO Gaoping, et al. Influence of petroleum coke on the structure and properties of microcrystalline carbon[J]. Journal of Function Materials, 2007, 38(S1): 677-680. | |
32 | LI P, LIU J Y, WANG Y W, et al. Synthesis of ultrathin hollow carbon shell from petroleum asphalt for high-performance anode material in lithium-ion batteries[J]. Chemical Engineering Journal, 2016, 286: 632-639. |
33 | XING B L, HUANG G X, CHEN L J, et al. Microwave synthesis of hierarchically porous activated carbon from lignite for high performance supercapacitors[J]. Journal of Porous Materials, 2016, 23(1): 67-73. |
34 | GUO H S, DING B, WANG J, et al. Template-induced self-activation route for nitrogen-doped hierarchically porous carbon spheres for electric double layer capacitors[J]. Carbon, 2018, 136: 204-210. |
35 | LIU C, XIAO N, WANG Y W, et al. Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries[J]. Fuel Processing Technology, 2018, 180: 173-179. |
36 | LIU C, LIU X G, TAN J, et al. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J]. Journal of Power Sources, 2017, 342: 157-164. |
37 | 梁树钊. 石墨烯基材料合成及其储锂性能研究[D]. 广州: 华南理工大学, 2012. |
LIANG Shuzhao. Synthesis of graphene-based materials and their lithium storage properties[D]. Guangzhou: South China University of Technology, 2012. | |
38 | OHZUKU T, IWAKPSHI Y, SAWAI K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. Cheminform, 1993, 140(9): 2490-2497. |
39 | 谷书华, 张文静, 王力臻, 等. 锂离子电池石墨负极嵌脱锂机理研究[J]. 郑州轻工业学院学报(自然科学版), 2012, 27(1): 4-6. |
GU Shuhua, ZHANG Wenjing, WANG Lizhen, et al. Research on the mechanism of graphite negative electrode embedding and removing lithium in lithium ion batteries [J]. Journal of Zhengzhou University of Light Industry (Natural Science Edition), 2012, 27(1): 4-6. | |
40 | 黄佳琦, 张强, 金涌, 等. 纳米石墨化碳在锂离子电池中的应用进展[J]. 储能科学与技术, 2012, 1(1): 1-12. |
HUANG Jiaqi, ZHANG Qiang, JIN Yong, et al. Application progress of nanometer graphitized carbon in lithium ion battery[J]. Energy Storage Science and Technology, 2012, 1(1): 1-12. | |
41 | 尹笃林, 范长岭, 徐仲榆. 锂离子电池首次充、放电时石墨负电极与电解液界面所发生的反应[J]. 炭素技术, 2005(6): 9-16. |
YIN Dulin, FAN Changlin, XU Zhongyu. Reaction between graphite negative electrode and electrolyte interface during initial charge and discharge of lithium ion battery [J]. Carbon Technology, 2005(6): 9-16. | |
42 | HOANG V C, HASSAN M, GOMES V G. Coal derived carbon nanomaterials-recent advances in synthesis and applications [J]. Applied Materials Today, 2018, 12: 342-358. |
43 | 陈丽薇. 煤基锂离子电池负极材料的制备及电化学性能[D]. 焦作: 河南理工大学, 2017. |
CHEN Liwei. Preparation and electrochemical properties of cathode materials for coal-based lithium ion batteries[D]. Jiaozuo: Henan Polytechnic University, 2017. | |
44 | 司东永, 黄光许, 张传祥, 等. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 材料导报, 2018, 32(3): 368-372. |
SI Dongyong, HUANG Guangxu, ZHANG Chuanxiang, et al. Preparation and electrochemical properties of humic acid based inking materials[J]. Materials Review, 2018, 32(3): 368-372. | |
45 | JULIEN C M, MAUGER A, GROULT H, et al. Surface modification of positive electrode materials for lithium-ion batteries[J]. Thin Solid Films, 2014, 572: 200-207. |
46 | AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. |
47 | LI L B, YANG S, LI J S, et al. Gelled ionic liquid/PMMA polymer electrolyte prepared by radical polymerization[J]. Chinese Journal of Chemical Physics, 2014(4): 485-490. |
48 | 赵琢, 贾晓川, 李晶, 等. 天然石墨负极的氧化改性[J]. 新型炭材料, 2013, 28(5): 385-390. |
ZHAO Zhuo, JIA Xiaochuan, LI Jing, et al. Oxidative modification of natural graphite for use as the anode of a lithium-ion battery[J]. New Carbon Materials, 2013, 28(5): 385-390. |
[1] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[2] | 陈雪, 刘书林, 和凤祥, 吕晗, 武全宇, 王浩, 屈滨. 基于煤系重质芳烃制备负极材料改性剂及性能[J]. 化工进展, 2022, 41(12): 6461-6468. |
[3] | 彭得群. CuGeO3/泡沫镍负极材料的制备及其电化学性能[J]. 化工进展, 2022, 41(1): 343-349. |
[4] | 俞明浩, 顾梦旋, 吴正颖, 孙林兵. 锰氧化物的合成及在锂离子电池中的应用进展[J]. 化工进展, 2021, 40(9): 5012-5028. |
[5] | 杨蒙蒙, 姚卫棠. 生物质碳材料在钾离子电池负极材料中的应用[J]. 化工进展, 2021, 40(3): 1495-1505. |
[6] | 马欣如, 郭涛, 王群, 李俊美, 张振楠, 曹青. 煤沥青基吸水树脂的制备与性能[J]. 化工进展, 2021, 40(10): 5634-5641. |
[7] | 胡思思, 孙丽芝, 张迪, 王波. Fe掺杂宣纸基碳纤维材料的储锂性能[J]. 化工进展, 2021, 40(10): 5370-5377. |
[8] | 魏润宏, 徐汝辉, 胡学军, 张克宇, 张业男, 梁风, 姚耀春. SnO2-C复合负极材料的维度设计用于锂、钠离子电池[J]. 化工进展, 2020, 39(7): 2677-2686. |
[9] | 张利辉, 徐宇兴, 刘振法, 魏爱佳, 李文. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019, 38(02): 949-955. |
[10] | 张鼎, 燕永旺, 史文静, 赵小敏, 刘世斌, 王晓敏. 钾离子电池研究进展[J]. 化工进展, 2018, 37(10): 3772-3780. |
[11] | 张英杰, 朱子翼, 董鹏, 赵少博, 章艳佳, 杨成云, 杨城沣, 韦克毅, 李雪. 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115. |
[12] | 肖南, 邱介山. 煤沥青基功能碳材料的研究现状及前景[J]. 化工进展, 2016, 35(06): 1804-1811. |
[13] | 杨燕红, 刘媛媛, 孙鸣, 宋真真, 赵香龙, 马晓迅. 煤沥青与石油沥青共混改性及其热解特性[J]. 化工进展, 2016, 35(02): 479-484. |
[14] | 王仙宁, 凌锋, 潘薇, 刘会景. 锂离子电池负极材料中国专利分析[J]. 化工进展, 2016, 35(01): 336-339. |
[15] | 孙昱,廖志远,苏龙,曾鹏 . 溶剂效应对脱除煤沥青中3,4-苯并芘的影响[J]. 化工进展, 2014, 33(08): 2211-2214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |