化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5634-5641.DOI: 10.16085/j.issn.1000-6613.2020-2105
收稿日期:
2020-10-20
修回日期:
2021-01-11
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
曹青
作者简介:
马欣如(1995—),女,硕士研究生,研究方向为煤资源高效开发。E-mail:基金资助:
MA Xinru(), GUO Tao, WANG Qun, LI Junmei, ZHANG Zhennan, CAO Qing()
Received:
2020-10-20
Revised:
2021-01-11
Online:
2021-10-10
Published:
2021-10-25
Contact:
CAO Qing
摘要:
以煤沥青为原料、空气为氧化剂、碱性水溶液为介质,考察了液固比、固碱比及反应时间等对煤沥青氧化率的影响。在此基础上,本文将煤沥青氧化液体产物(LP)直接与丙烯酸(AA)通过溶液聚合法制备出高吸水树脂。通过单因素与正交设计实验确定各因素对树脂吸水性能的影响,进而确定出合成树脂的最佳反应条件。同时,对合成树脂进行了结构表征与反应机理分析。结果表明,LP同丙烯酸、过硫酸铵和N-N′-亚甲基双丙烯酰胺在温度为75℃、时间为30min的最佳反应条件下合成的树脂具有最大吸水值,而红外吸收光谱证实合成的树脂含有LP中芳香组分的芳环特征吸收峰。其中,在去离子水与0.9%(质量分数)NaCl水溶液中最大吸水倍率分别为613.3g/g与42.2g/g,而合成树脂的机理是LP中的苯多酸与AA和N,N′-亚甲基双丙烯酰胺通过酯基联结而成。该研究为高效利用煤沥青探索出一条可供选择的新途径。
中图分类号:
马欣如, 郭涛, 王群, 李俊美, 张振楠, 曹青. 煤沥青基吸水树脂的制备与性能[J]. 化工进展, 2021, 40(10): 5634-5641.
MA Xinru, GUO Tao, WANG Qun, LI Junmei, ZHANG Zhennan, CAO Qing. Preparation and properties of coal pitch-based water-absorbing resin[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5634-5641.
影响因素 | 固液比 /g·mL-1 | 温度 /℃ | 时间 /h | 固碱比 /g·g-1 | 氧化率 /% |
---|---|---|---|---|---|
煤沥青∶H2O | 10∶200 | 240 | 2 | 1∶2 | 30.3 |
20∶200 | 240 | 2 | 1∶2 | 29.5 | |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
反应温度 | 30∶200 | 220 | 2 | 1∶2 | 26.4 |
30∶200 | 230 | 2 | 1∶2 | 27.7 | |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
反应时间 | 30∶200 | 240 | 1 | 1∶2 | 24.0 |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
30∶200 | 240 | 3 | 1∶2 | 30.1 | |
煤沥青∶碱 | 30∶200 | 240 | 2 | 1∶1 | 19.2 |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
30∶200 | 240 | 2 | 1∶3 | 31.1 |
表1 不同反应条件煤沥青的氧化率
影响因素 | 固液比 /g·mL-1 | 温度 /℃ | 时间 /h | 固碱比 /g·g-1 | 氧化率 /% |
---|---|---|---|---|---|
煤沥青∶H2O | 10∶200 | 240 | 2 | 1∶2 | 30.3 |
20∶200 | 240 | 2 | 1∶2 | 29.5 | |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
反应温度 | 30∶200 | 220 | 2 | 1∶2 | 26.4 |
30∶200 | 230 | 2 | 1∶2 | 27.7 | |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
反应时间 | 30∶200 | 240 | 1 | 1∶2 | 24.0 |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
30∶200 | 240 | 3 | 1∶2 | 30.1 | |
煤沥青∶碱 | 30∶200 | 240 | 2 | 1∶1 | 19.2 |
30∶200 | 240 | 2 | 1∶2 | 31.3 | |
30∶200 | 240 | 2 | 1∶3 | 31.1 |
编号 | A:APS①/% | B:MBA①/% | C:T/℃ | D:P/% | Q/g·g-1 |
---|---|---|---|---|---|
1 | 3.6 | 0.08 | 65 | 50 | 349.8 |
2 | 3.6 | 0.10 | 75 | 60 | 542.4 |
3 | 3.6 | 0.12 | 85 | 70 | 308.9 |
4 | 3.8 | 0.08 | 75 | 70 | 463.8 |
5 | 3.8 | 0.10 | 85 | 50 | 303.9 |
6 | 3.8 | 0.12 | 65 | 60 | 554.7 |
7 | 4.0 | 0.08 | 85 | 60 | 324.9 |
8 | 4.0 | 0.10 | 65 | 70 | 455.1 |
9 | 4.0 | 0.12 | 75 | 50 | 402.5 |
均值1 | 400.367 | 379.500 | 453.200 | 352.067 | — |
均值2 | 440.800 | 433.800 | 469.567 | 474.000 | — |
均值3 | 394.167 | 422.033 | 312.567 | 409.267 | — |
极差 | 46.633 | 54.300 | 157.000 | 121.933 | — |
表2 P-PAA正交实验数据表[L9(34)]
编号 | A:APS①/% | B:MBA①/% | C:T/℃ | D:P/% | Q/g·g-1 |
---|---|---|---|---|---|
1 | 3.6 | 0.08 | 65 | 50 | 349.8 |
2 | 3.6 | 0.10 | 75 | 60 | 542.4 |
3 | 3.6 | 0.12 | 85 | 70 | 308.9 |
4 | 3.8 | 0.08 | 75 | 70 | 463.8 |
5 | 3.8 | 0.10 | 85 | 50 | 303.9 |
6 | 3.8 | 0.12 | 65 | 60 | 554.7 |
7 | 4.0 | 0.08 | 85 | 60 | 324.9 |
8 | 4.0 | 0.10 | 65 | 70 | 455.1 |
9 | 4.0 | 0.12 | 75 | 50 | 402.5 |
均值1 | 400.367 | 379.500 | 453.200 | 352.067 | — |
均值2 | 440.800 | 433.800 | 469.567 | 474.000 | — |
均值3 | 394.167 | 422.033 | 312.567 | 409.267 | — |
极差 | 46.633 | 54.300 | 157.000 | 121.933 | — |
1 | OSHIKA T, OKUWAKI A. Formation of aromatic carboxylic acids from coal-tar pitch by two-step oxidation with oxygen in water and in alkaline solution[J]. Fuel, 1994, 73(1): 77-81. |
2 | 骆仲泱, 王少鹏, 方梦祥, 等. 煤焦油沥青的深度利用及发展前景[J]. 化工进展, 2016, 35(2): 611-616. |
LUO Zhongyang, WANG Shaopeng, FANG Mengxiang, et al. Further processing and prospect of coal tar pitch utilization[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 611-616. | |
3 | 肖南, 邱介山. 煤沥青基功能碳材料的研究现状及前景[J]. 化工进展, 2016, 35(6): 1804-1811. |
XIAO Nan, QIU Jieshan. Progress in synthesis and applications of functional carbon materials from coal tar pitch[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1804-1811. | |
4 | 肖劲, 王英, 刘永东, 等. 煤沥青的改性研究进展[J]. 炭素技术, 2010, 29(2): 31-37. |
XIAO Jin, WANG Ying, LIU Yongdong, et al. Progress in coal tar pitch modification[J]. Carbon Techniques, 2010, 29(2): 31-37. | |
5 | 何海霞, 万亚萌, 陈欢哲, 等. 煤沥青的改性工艺研究进展[J]. 炭素技术, 2018, 37(6): 1-7. |
HE Haixia, WAN Yameng, CHEN Huanzhe, et al. Research progress on modification and application of coal tar pitch[J]. Carbon Techniques, 2018, 37(6): 1-7. | |
6 | MORA E, SANTAMARIA R, BLANCO C, et al. Mesophase development in petroleum and coal-tar pitches and their blends[J]. Journal of Analytical and Applied Pyrolysis, 2003, 68/69: 409-424. |
7 | OSHIKA T, OKUWAKI A. Formation of aromatic carboxylic acids from coal-tar pitch by two-step oxidation with oxygen in water and in alkaline solution[J]. Fuel, 1994, 73(1): 77-81. |
8 | 牛泽世. 煤沥青中芳环结构的表征及其氧化降解制备苯多酸[D]. 太原: 太原理工大学, 2018. |
NIU Zeshi. Characterization of aromatic structures in coal tar pitch and preparation of benzeoic acids by oxidation degradation[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
9 | SAMEJIMA K, OSHIKA T, OKUWAKI A. Oxygen-oxidation of coal tar pitch in NaOH solutions[J]. Nippon Kagaku Kaishi, 1990(3): 291-298. |
10 | WANG Yugao, NIU Zeshi, SHEN Jun, et al. Formation of benzene polycarboxylic acids using alkali-oxygen oxidation of coal-tar pitch pre-treated by extraction and air-blowing[J]. Fuel Processing Technology, 2019, 185: 100-105. |
11 | 李晓璐, 鲍艳, 马建中. 无机-有机纳米复合高吸水性树脂研究进展[J]. 化工新型材料, 2016, 44(2): 43-45. |
LI Xiaolu, BAO Yan, MA Jianzhong. Research advances in inorganic-organic nanocomposite superabsorbent resin[J]. New Chemical Materials, 2016, 44(2): 43-45. | |
12 | ZOHURIAAN-MEHR M J, KABIRI K. Superabsorbent polymer materials: a review[J]. Iranian Polymer Journal, 2008, 17(6): 357-364. |
13 | 刘嵩, 李磊. 合成高吸水聚合物的进展[J]. 高分子材料科学与工程, 2001, 17(3): 11-14. |
LIU Song, LI Lei. The development on synthesis of superabsorbents[J]. Polymeric Materials Science & Engineering, 2001, 17(3): 11-14. | |
14 | 陈振斌, 马应霞, 张安杰, 等. 聚丙烯酸钠高吸水性树脂的改性研究进展[J]. 应用化工, 2009, 38(11): 1656-1661. |
CHEN Zhenbin, MA Yingxia, ZHANG Anjie, et al. Advanced development of modification of superabsorbent polymer based on sodium polyacrylate[J]. Applied Chemical Industry, 2009, 38(11): 1656-1661. | |
15 | 梁兴唐, 刘子杰, 邓勤, 等. 淀粉复合高吸水树脂微波快速合成及溶胀性能[J]. 精细化工, 2014, 31(2): 157-162, 192. |
LIANG Xingtang, LIU Zijie, DENG Qin, et al. Fast synthesis of starch based superabsorbent polymer by microwave method and its swelling properties[J]. Fine Chemicals, 2014, 31(2): 157-162, 192. | |
16 | 唐宏科, 陈飞, 张斌. 耐盐性丙烯酸共聚物/膨润土高吸水性复合材料的研究[J]. 化工新型材料, 2011, 39(6): 87-88, 98. |
TANG Hongke, CHEN Fei, ZHANG Bin. Research on copolyacrylic/bentonite with salt resistance super absorbent composite material[J]. New Chemical Materials, 2011, 39(6): 87-88, 98. | |
17 | 初茉, 朱书全, 李华民, 等. 腐殖酸-聚丙烯酸表面交联吸水性树脂的合成与性能[J]. 化工学报, 2005, 56(10): 2004-2008. |
CHU Mo, ZHU Shuquan, LI Huamin, et al. Synthesis and characterization of surface cross-linked humic acid/poly acrylic acid superabsorbent resin[J]. CIESC Journal, 2005, 56(10): 2004-2008. | |
18 | 刘焕梅, 刘焕昱, 孙晓然. 反相悬浮法制备腐植酸高吸水性树脂[J]. 化学世界, 2012, 53(8): 463-466, 470. |
LIU Huanmei, LIU Huanyu, SUN Xiaoran. Synthesis humic acid super-absorbent resin by reversed-phase suspension polymerization[J]. Chemical World, 2012, 53(8): 463-466, 470. | |
19 | 刘栋, 孙晓然. 腐殖酸钠-丙烯酸高吸水性树脂的制备[J]. 河北化工, 2009, 32(2): 14-15. |
LIU Dong, SUN Xiaoran. Synthesis of humic acid-acrylic superabsorbent resin[J]. Hebei Chemical Engineering and Industry, 2009, 32(2): 14-15. | |
20 | LIU Jianghua, WANG Qin, WANG Aiqin. Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent[J]. Carbohydrate Polymers, 2007, 70(2): 166-173. |
21 | HUA Shuibo, WANG Aiqin. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent[J]. Carbohydrate Polymers, 2009, 75(1): 79-84. |
22 | WANG Wenbo, WANG Aiqin. Synthesis, swelling behaviors, and slow-release characteristics of a guar gum-g-poly(sodium acrylate)/sodium humate superabsorbent[J]. Journal of Applied Polymer Science, 2009, 112(4): 2102-2111. |
23 | 李鑫, 王子儒, 赵冬冬, 等. HA-PAA-CMC高吸水性树脂的制备及性能[J]. 工程塑料应用, 2018, 46(7): 24-30. |
LI Xin, WANG Ziru, ZHAO Dongdong, et al. Preparation and properties of HA-PAA-CMC superabsorbent resin[J]. Engineering Plastics Application, 2018, 46(7): 24-30. | |
24 | 郭雅妮, 骆晓琳, 徐斗均, 等. 风化煤腐植酸丙烯酸高吸水性树脂的制备及其性能[J]. 西北大学学报(自然科学版), 2018, 48(2): 214-218, 225. |
GUO Yani, LUO Xiaolin, XU Doujun, et al. The preparation and water absorbency of weathered coal HA-PAA super absorbent resin[J]. Journal of Northwest University(Natural Science Edition), 2018, 48(2): 214-218, 225. | |
25 | 刘兴玉, 南国枝, 曹重远. 褐煤氧化制备水溶酸[J]. 中国石油大学学报(自然科学版), 1999, 23(3): 83-85. |
LIU Xingyu, Guozhi NAN, CAO Zhongyuan. Formation of water-soluble acids from lignite by air-oxidation in alkaline medium[J]. Journal of China University of Petroleum(Edition of Natural Science), 1999, 23(3): 83-85. | |
26 | 潘琦琨. 霍林河褐煤碱氧氧化及煤酸浆态床异构化制对苯二甲酸研究[D]. 大连: 大连理工大学, 2007. |
PAN Qikun. Formation of aromatic polycarboxylic acids from Huolinhe lignite by oxygen oxidation in alkaline medium and synthesis of terephthalic acid by isomerization of coal acid in slurry reactor[D]. Dalian: Dalian University of Technology, 2007. | |
27 | 赵宇薇. 褐煤碱-氧氧化的产物分析及其结构的基础研究[D]. 北京: 北京化工大学, 2015. |
ZHAO Yuwei. A study on alkali-oxygen oxidation and the basic organic structure of lignite[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
28 | 石燕军, 朱丽珺, 张金池, 等. 复合型保水剂的制备与性能研究[J]. 南京林业大学学报(自然科学版), 2017, 41(5): 114-120. |
SHI Yanjun, ZHU Lijun, ZHANG Jinchi, et al. Synthesis and property of composite super absorbent polymer[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 114-120. | |
29 | 祝宝东, 马东卓, 何乾坤, 等. 玉米秸秆接枝丙烯酸-丙烯酰胺树脂的制备与吸水性能[J]. 化工进展, 2015, 34(1): 198-202. |
ZHU Baodong, MA Dongzhuo, HE Qiankun, et al. Preparation and water absorbency performance of corn straw grafted acrylic acid-acrylamide superabsorbents[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 198-202. | |
30 | 李铭杰, 李仲谨, 诸晓锋, 等. 天然高分子改性制备高吸水性树脂研究进展[J]. 化工进展, 2010, 29(3): 573-578. |
LI Mingjie, LI Zhongjin, ZHU Xiaofeng, et al. Research progress in super absorbent resin prepared from modification of natural polymers[J]. Chemical Industry and Engineering Progress, 2010, 29(3): 573-578. | |
31 | WANG Zhimin, NING Aimin, XIE Puhui, et al. Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide[J]. Carbohydrate Polymers, 2017, 157: 48-56. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[12] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[13] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[14] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |