1 |
姜旭, 王翠苹, 张龙龙. 煤化学链燃烧装置中串联分离器的数值模拟与性能优化[J]. 化工进展, 2016, 35(2): 425-431.
|
|
JIANG Xu, WANG Cuiping, ZHANG Longlong. Numerical simulation and optimization on the performance of double-stage cyclone separator in coal-fueled CLC facility[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 425-431.
|
2 |
王敏, 吴迎亚, 石孝刚, 等. 气固循环流化床全回路数值模拟研究进展[J]. 化工进展, 2019, 38(1): 111-121.
|
|
WANG Min, WU Yingya, SHI Xiaogang, et al. Review of full-loop simulation of gas-solid circulating fluidized bed[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 111-121.
|
3 |
周先桃, 王依谋, 马良, 等. 液相射流吸收耦合气相旋流分离烟气脱硫[J]. 化工进展, 2016, 35(12): 4053-4059.
|
|
ZHOU Xiantao, WANG Yimou, MA Liang, et al. Flue gas desulfurization research in liquid jet-absorption coupled gas cyclone-separation device[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4053-4059.
|
4 |
HOFFMANN A C, STEIN L E. Gas cyclones and swirl tubes: principles, design and operation[M]. 2nd ed. Heidelberg: Springer-Verlag Berlin, 2008: 90.
|
5 |
ZHAO Bingtao, WANG Dongshen, SU Yaxin, et al. Gas-particle cyclonic separation dynamics: modeling and characterization[J]. Separation & Purification Reviews, 2018, 49(2): 112-142.
|
6 |
LAPPLE C E. Gravity and centrifugal separation[J]. American Industrial Hygiene Association Quarterly, 1950, 11: 40-48.
|
7 |
BARTH W. Design and layout of the cyclone separator on the basis of new investigations[J]. Brennst-Warme-Kraft, 1956, 8(1): 1-9.
|
8 |
IOZIA D L, LEITH D. Effect of cyclone dimensions on gas flow pattern and collection efficiency[J]. Aerosol Science Technology, 1989, 10: 491-500.
|
9 |
ZHAO Bingtao, SU Yaxin. Particle size cut performance of aerodynamic cyclone separators: generalized modeling and characterization by correlating global cyclone dimensions[J]. Journal of Aerosol Science, 2018, 120: 1-11.
|
10 |
MOORE M E, MCFARLAND A R. Performance modeling of single-inlet aerosol sampling cyclones[J]. Environmental Science & Technology, 1993, 27(9): 1842-1848.
|
11 |
LIDÉN G, GUDMUNDSSON A. Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design[J]. Journal of Aerosol Science, 1997, 28(5): 853-874.
|
12 |
舒朝晖, 肖莉, 程雁, 等. 油水分离水力旋流器的人工神经网络模拟[J]. 石油机械, 2003, 31(3): 11-13, 33.
|
|
SHU Zhaohui, XIAO Li, CHENG Yan, et al. Artificial neural network simulation of hydrocyclones for oil-water separation[J]. China Petroleum Machinery, 2003, 31(3): 11-13, 33.
|
13 |
SAFIKHANI H, HAJILOO A, RANJBAR M A. Modeling and multi-objective optimization of cyclone separators using CFD and genetic algorithms[J]. Computers & Chemical Engineering, 2011, 35(6): 1064-1071.
|
14 |
ELSAYED K, LACOR C. Modeling and Pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms[J]. Powder Technology, 2012, 217: 84-99.
|
15 |
HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 1994, 5(6): 989-993.
|
16 |
ANTONIOU A, LU Wusheng. Practical optimization: algorithms and engineering applications[M]. New York: Springer, 2007: 191-192.
|
17 |
FORESEE F D, HAGAN M T. Gauss-Newton approximation to Bayesian learning[C]// Proceedings of International Conference on Neural Networks. USA: IEEE, 1997: 1930-1935.
|
18 |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back propagating errors[J]. Nature, 1986, 323: 533-536.
|
19 |
HECHT-NIELSEN R. Theory of the backpropagation neural network[C]//International 1989 Joint Conference on Neural Networks. USA: IEEE, 1989: 593-605.
|
20 |
TICKNOR J L, HSU-KIM H, DESHUSSES M A. A robust framework to predict mercury speciation in combustion flue gases[J]. Journal of Hazardous Materials, 2014, 264: 380-385.
|
21 |
ELSAYED K, LACOR C. The effect of cyclone inlet dimensions on the flow pattern and performance[J]. Applied Mathematical Modelling, 2011, 35(4): 1952-1968.
|
22 |
ZHAO Bingtao, SU Yaxin. Cyclone performances depend on multiple factors: comments on “A CFD study of the effect of cyclone size on its performance parameters” by Mehdi Azadiet al. (2010)[J]. Journal of Hazardous Materials, 2016, 303: 174-176.
|
23 |
李庆生, 张译峰. 基于响应曲面法的蜗壳式旋风分离器分离效率[J]. 中国粉体技术, 2015, 21(1): 96-99.
|
|
LI Qingsheng, ZHANG Yifeng. Separation efficiency of volute cyclone based on response surface method[J]. China Powder Science and Technology, 2015, 21(1): 96-99.
|
24 |
ZHU Yifang, LEE K W. Experimental study on small cyclones operating at high flowrates[J]. Journal of Aerosol Science, 1999, 30(10): 1303-1315.
|
25 |
XIANG Rongbiao, LEE K W. Numerical study of flow field in cyclones of different height[J]. Chemical Engineering and Processing, 2005, 44(8): 877-883.
|
26 |
DRING R P, SUO M. Particle trajectories in swirling flows[J]. Energy, 1978, 2(4): 232-237.
|
27 |
MOORE M E, MCFARLAND A R. Design methodology for multiple inlet cyclones[J]. Environmental Science & Technology, 1996, 30(1): 271-276.
|
28 |
STAIRMAND C J. The design and performance of cyclone separators[J]. Industrial and Engineering Chemistry, 1951, 29: 356-383.
|
29 |
WHITBY K T, PETERSON C M. Electrical neutralization and particle size measurement of dye aerosols[J]. Industrial & Engineering Chemistry Fundamentals, 1965, 4(1): 66-72.
|
30 |
BEECKMANS J M, KIM C J. Analysis of the efficiency of reverse flow cyclones[J]. Canadian Journal of Chemical Engineering, 1977, 55(6): 640-643.
|
31 |
SALTZMAN B E, HOCHSTRASSER J M. Design and performance of miniature cyclones for respirable aerosol sampling[J]. Environmental Science & Technology, 1983, 17(7): 418-424.
|
32 |
DIRGO J, LEITH D. Cyclone collection efficiency: comparison of experimental results with theoretical predictions[J]. Aerosol Science and Technology, 1985, 4(4): 401-415.
|
33 |
MOORE M E, MCFARLAND A R. Design of stairmand-type sampling cyclones[J]. American Industrial Hygiene Association, 1990, 51(3): 151-159.
|
34 |
MOORE M E, MCFARLAND A R. Performance modeling of single-inlet aerosol sampling cyclones[J]. Environmental Science & Technology, 1993, 27(9): 1842-1848.
|
35 |
KIM J C, LEE K W. Experimental study of particle collection by small cyclones[J]. Aerosol Science and Technology, 1990, 12(4): 1003-1015.
|
36 |
KENNY L C, GUSSMAN R A. Characterisation and modelling of a family of cyclone aerosol preseparators[J]. Journal of Aerosol Science, 1997, 28(4): 677-688.
|
37 |
XIANG R B, PARK S H, LEE K W. Effects of cone dimension on cyclone performance[J]. Journal of Aerosol Science, 2001, 32(4): 549-561.
|
38 |
ZHAO Bingtao, SHEN Henggen, KANG Yanming. Development of a symmetrical spiral inlet to improve cyclone separator performance[J]. Powder Technology, 2004, 145(1): 47-50.
|
39 |
HSIAO Ta-Chih, HUANG Sheng-Hsiu, Chia-Wei HSU, et al. Effects of the geometric configuration on cyclone performance[J]. Journal of Aerosol Science, 2015, 86: 1-12.
|
40 |
KENNARD R W, STONE L A. Computer aided design of experiments[J]. Technometrics, 1969, 11(1): 137-148.
|