化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6889-6896.DOI: 10.16085/j.issn.1000-6613.2020-2588
收稿日期:
2020-12-31
修回日期:
2021-03-28
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
唐安中
作者简介:
唐安中(1968—),男,硕士,教授级高级工程师,研究方向为给水排水与石油化工环境保护技术。E-mail:13970288583Received:
2020-12-31
Revised:
2021-03-28
Online:
2021-12-05
Published:
2021-12-21
Contact:
TANG Anzhong
摘要:
水体中的腐殖酸类天然有机物是影响水质重要因素之一,仅靠常规工艺难以去除水中腐殖质。氧化及其联用技术因效率高、能耗低、适用范围广,逐步成为去除此类污染物的预处理技术,臭氧、高锰酸钾等氧化剂具有较强氧化性的特点,已取代传统氧化剂-氯气,能有效将水中天然有机物(natural organic matter,NOM)分解为无毒小分子物质,且降低了饮用水水质致突变风险,其中,臭氧在安全性和副作用方面更具优势,但单一氧化技术存在不同程度的局限性。针对国内外不同水体状况,本文详细比较了氧化-混凝等联用技术去除水中腐殖酸的氧化机理、协同作用、去除效果和应用状况,探讨了不同的氧化及其联用技术去除水中NOM的研究进展情况,分析表明氧化技术组合工艺已成为去除水中腐殖酸的主流工艺,并指出预氧化-膜联用技术因其良好的协同性而具有广泛的应用前景。
中图分类号:
唐安中, 徐琪珂. 氧化及其联用技术去除水中腐殖酸研究进展[J]. 化工进展, 2021, 40(12): 6889-6896.
TANG Anzhong, XU Qike. Research progress on the removal of humic acids from water by oxidation and its derived hybrid processes[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6889-6896.
水源 | 预氧化剂 | 处理效果 | 参考文献 |
---|---|---|---|
阿利阿克蒙河河水 | O3 | DOC、UV254、有机物的去除率分别为10%~31%、44%~82%、70%~80% | [ |
微污染地表水 | O3 | UV254的去除率为13.4% | [ |
实验室合成水 | O3 | DOC、UV254、THMFP的去除率分别为42%、95%、89% | [ |
太湖湖水 | O3 | 络氨酸类蛋白有机物、色氨酸类蛋白有机物、紫外富里酸类物质的去除率分别为72.1%、69.9%、100% | [ |
表1 国内外采用O3去除HA研究
水源 | 预氧化剂 | 处理效果 | 参考文献 |
---|---|---|---|
阿利阿克蒙河河水 | O3 | DOC、UV254、有机物的去除率分别为10%~31%、44%~82%、70%~80% | [ |
微污染地表水 | O3 | UV254的去除率为13.4% | [ |
实验室合成水 | O3 | DOC、UV254、THMFP的去除率分别为42%、95%、89% | [ |
太湖湖水 | O3 | 络氨酸类蛋白有机物、色氨酸类蛋白有机物、紫外富里酸类物质的去除率分别为72.1%、69.9%、100% | [ |
水源 | 预氧化剂 | 处理效果 | 参考文献 |
---|---|---|---|
克罗地亚东部地区地下水 | Fe2+/H2O2 | THMFP的去除率可达70% | [ |
佛罗里达国家森林公园湖水 | UV/H2O2 | DOC、UV254去除率分别为79%~97%、42%~82% | [ |
俄罗斯Mir矿 | H2O2 | HA降解率高于40% | [ |
实验室合成水 | H2O2 | TOC、Na2C2O4去除率均高于45% | [ |
表2 国内外采用H2O2及联用技术去除HA
水源 | 预氧化剂 | 处理效果 | 参考文献 |
---|---|---|---|
克罗地亚东部地区地下水 | Fe2+/H2O2 | THMFP的去除率可达70% | [ |
佛罗里达国家森林公园湖水 | UV/H2O2 | DOC、UV254去除率分别为79%~97%、42%~82% | [ |
俄罗斯Mir矿 | H2O2 | HA降解率高于40% | [ |
实验室合成水 | H2O2 | TOC、Na2C2O4去除率均高于45% | [ |
水源 | 预氧化剂 | 处理效果 | 参考文献 |
---|---|---|---|
微污染地表水 | KMnO4 | DOC、UV254的去除率分别为 17.5%、13.4% | [ |
东太湖、西太湖湖水 | KMnO4 | 西太湖和东太湖湖水的UV254去除率分别为 10.46%、6.56% | [ |
萨瓦尼河河水 | K2FeO4 | 最高DOC去除率为 28% | [ |
帕赛克河河水 | K2FeO4 | DOC、UV254去除率分别为 26%、85% | [ |
表3 KMnO4及K2FeO4对HA的去除效果统计表
水源 | 预氧化剂 | 处理效果 | 参考文献 |
---|---|---|---|
微污染地表水 | KMnO4 | DOC、UV254的去除率分别为 17.5%、13.4% | [ |
东太湖、西太湖湖水 | KMnO4 | 西太湖和东太湖湖水的UV254去除率分别为 10.46%、6.56% | [ |
萨瓦尼河河水 | K2FeO4 | 最高DOC去除率为 28% | [ |
帕赛克河河水 | K2FeO4 | DOC、UV254去除率分别为 26%、85% | [ |
1 | LI S X, HE M X, LI Z J, et al. Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium[J]. Journal of Molecular Liquids, 2017, 230: 520-528. |
2 | 李凯, 王晓东, 黄廷林. 湖库型水源天然有机物来源与特性及其对水处理工艺影响研究进展[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(4): 588-593. |
LI Kai, WANG Xiaodong, HUANG Tinglin. Review on the origin, characteristics and treatability of natural organic matter in lakes and reservoirs[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2018, 50(4): 588-593. | |
3 | Matej ČEHOVIN, MEDIC Alojz, SCHEIDELER Jens, et al. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water[J]. Ultrasonics Sonochemistry, 2017, 37: 394-404. |
4 | MOONA Nashita, MURPHY Kathleen R, BONDELIND Mia, et al. Partial renewal of granular activated carbon biofilters for improved drinking water treatment[J]. Environmental Science: Water Research & Technology, 2018, 4(4): 529-538. |
5 | 董秉直, 何畅, 阎婧. 预氧化与混凝联用控制膜污染的效果与机理[J]. 给水排水, 2015, 51(3): 115-119. |
DONG Bingzhi, HE Chang, YAN Jing. Effect and mechanism of membrane fouling control by combination of pre oxidation and coagulation[J]. Water & Wastewater Engineering, 2015, 51(3): 115-119. | |
6 | 姬广雪, 刘建广, 孙韶华, 等. 饮用水源腐殖酸高级氧化去除技术研究进展[J]. 水处理技术, 2020, 46(1): 12-16. |
JI Guangxue, LIU Jianguang, SUN Shaohua, et al. Advances in advanced oxidation removal technology of humic acid from drinking water source[J]. Technology of Water Treatment, 2020, 46(1): 12-16. | |
7 | SONG Y L, DONG B Z, GAO N Y, et al. Huangpu River water treatment by microfiltration with ozone pretreatment[J]. Desalination, 2010, 250(1): 71-75. |
8 | 刘晋, 张婷, 陈敏敏. 微污染水源中腐殖酸的去除机理及动力学研究进展[J]. 应用化工, 2017, 46(4): 744-748. |
LIU Jin, ZHANG Ting. CHEN Minmin. Research progress of mechanism and kinetics for removal of humic acid in micro polluted water resource[J]. Applied Chemical Industry, 2017, 46(4): 744-748. | |
9 | 邵青, 王颖, 李晶, 等. 紫外/臭氧工艺在水处理中的技术原理及研究进展[J]. 中国给水排水, 2019, 35(14): 16-23. |
SHAO Qing, WANG Ying, LI Jing, et al. technical principle and research progress of UV/O3 process in water treatment[J]. China Water & Wastewater, 2019, 35(14): 16-23. | |
10 | 何欢, 隋倩, 吕树光, 等.污水出水有机物对臭氧氧化舒必利的影响[J]. 化工进展, 2015, 34(3): 867-871. |
HE Huan, SUI Qian, Shuguang LYU, et al. Effects of effluent organic matter on ozonation of sulpiride[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 867-871. | |
11 | PAPAGEORGIOU A, STYLIANOU S K, KAFFES P, et al. Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter-possible implications on the formation of ozonation by-products.[J]. Chemosphere, 2017, 170: 33-40. |
12 | 张朝晖, 李想乐, 赵赫, 等. 微污染地表水中天然有机物预氧化后各组分去除规律[J]. 给水排水, 2015, 51(11): 115-121. |
ZHANG Zhaohui, LI Xiangle, ZHAO He, et al. Removal of natural organic compounds in micro polluted surface water after preoxidation[J]. Water & Wastewater Engineering, 2015, 51(11): 115-121. | |
13 | SADRNOURMOHAMMADI Mehrnaz, BREZINSKI Kenneth, GORCZYCA Beata. Ozonation of natural organic matter and aquatic humic substances: the effects of ozone on the structural characteristics and subsequent trihalomethane formation potential[J]. Water Quality Research Journal, 2020, 55(2): 155-166. |
14 | 胡淑圆, 袁君, 笪跃武, 等. 某水厂水处理工艺对天然有机物的去除及相关性分析[J]. 净水技术, 2017, 36(S1): 50-55. |
HU Shuyuan, YUAN Jun, Yuewu DA, et al. Removal and correlation analysis of NOM in water treatment process of a waterworks[J]. Water Purification Technology, 2017, 36(S1): 50-55. | |
15 | MAO Yuqin, GUO Di, YAO Weikun, et al. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination[J]. Water Research, 2018, 130: 322-332. |
16 | YU Jianwei, WANG Yongjing, WANG Qi, et al. Implications of bromate depression from H2O2 addition during ozonation of different bromide-bearing source waters [J]. Chemosphere, 2020, 252: 126596. |
17 | BAZRI Mohammad Mahdi, BARBEAU Benoit, MOHSENI Madjid. Impact of UV/H₂O₂ advanced oxidation treatment on molecular weight distribution of NOM and biostability of water[J]. Water Research, 2012, 46(16): 5297-5304. |
18 | AKBARI Somaye, GHANBARI Farshid, MORADI Mahsa. Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: applying low current density for oxidation mechanism[J]. Chemical Engineering Journal, 2016, 294: 298-307. |
19 | Yongtae AHN, LEE Doorae, KWON Minhwan, et al. Characteristics and fate of natural organic matter during UV oxidation processes[J]. Chemosphere, 2017, 184: 960-968. |
20 | 苑鹏, 卢凤菊, 梅雪, 等. 高级氧化法在烟气脱硫脱硝脱汞中的应用研究进展[J]. 化工进展, 2016, 35(10): 3313-3322. |
YUAN Peng, LU Fengju, MEI Xue, et al. Recent progress on application of advanced oxidation processes(AOPs) to remove SO2, NOx and Hg0 from flue gas[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3313-3322. | |
21 | 刘丹, 李露, 宋康, 等. 三维荧光分析评价腐殖酸高级氧化前处理效果的研究[J]. 生态与农村环境学报, 2020, 36(7): 914-920. |
LIU Dan, LI Lu, SONG Kang, et al. FEEM analysis of fulvic acid pretreatment by advanced oxidation processes[J]. Journal of Ecology and Rural Environment, 2020, 36(7): 914-920. | |
22 | Brankica KALAJDŽIĆ, HABUDA Mirna, Željka ROMIĆ, et al. Removal of natural organic matter from groundwater using Fenton’s process[J]. Global NEST Journal, 2013, 15(1): 13-20. |
23 | SINDELAR Hugo R, BROWN Mark T, BOYER Treavor H. Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources[J]. Chemosphere, 2014, 105: 112-118. |
24 | Leoš DOSKOČIL, GRASSET Laurent, Dana VÁLKOVÁ, et al. Hydrogen peroxide oxidation of humic acids and lignite[J]. Fuel, 2014, 134: 406-413. |
25 | 程芳燕, 金会心, 李洋, 等. H2O2去除铝酸钠溶液中腐殖酸类有机物的实验研究[J]. 过程工程学报, 2016, 16(6): 927-932. |
CHENG Fangyan, JIN Huixin, LI Yang, et al. Experimental study on removal of humic acid organics from sodium aluminate solution by H2O2 oxidation[J].The Chinese Journal of Process Engineering, 2016, 16(6): 927-932. | |
26 | 李杰, 李茁, 李鹏, 等. 三维电催化氧化法的研究进展与应用[J]. 应用化工, 2020, 49(12): 3221-3225. |
LI Jie, LI Zhuo, LI Peng, et al. Research progress and application of three-dimensional electrocatalytic oxidation[J]. Applied Chemical Industry, 2020, 49(12): 3221-3225. | |
27 | SHARMA Virender K, ZBORIL Radek,VARMA Rajender S. Ferrates: greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2): 182-191. |
28 | JIANG Yanjun, GOODWILL Joseph E, TOBIASON John E, et al. Impacts of ferrate oxidation on natural organic matter and disinfection byproduct precursors[J]. Water Research, 2016, 96: 114-125. |
29 | 董秉直, 姚迎迎, 杜嘉丹. 预氧化去除太湖水中有机物和臭味物质的研究[J]. 给水排水, 2016, 52(2): 31-36. |
DONG Bingzhi, YAO Yingying, DU Jiadan. Study on the pre-oxidation of organics and odor in Taihu Lake[J]. Water & Wastewater Engineering, 2016, 52(2): 31-36. | |
30 | GAN Wenhui, SHARMA Virender K, ZHANG Xing, et al. Investigation of disinfection byproducts formation in ferrate(Ⅵ) pre-oxidation of NOM and its model compounds followed by chlorination[J]. Journal of Hazardous Materials, 2015, 292: 197-204. |
31 | WANG Xianshi, LIU Yulei, XU Shuyue, et al. Ferrate oxidation of phenolic compounds in iodine-containing water: control of iodinated aromatic products.[J]. Environmental science & technology, 2020, 54(3): 1827-1836. |
32 | SONG Yali, DENG Yang, JUNG Chanil. Mitigation and degradation of natural organic matters (NOMs) during ferrate(Ⅵ) application for drinking water treatment[J]. Chemosphere, 2016, 146: 145-153. |
33 | 张静, 朱亮. 强化高锰酸钾氧化去除水中有机污染物的技术综述[J]. 水资源保护, 2015, 31(6): 62-66. |
ZHANG Jing, ZHU Liang. Review on the catalytic permanganate oxidation of organic pollutants[J]. Water Resources Protection, 2015, 31(6): 62-66. | |
34 | 练佳佳, 唐庆杰, 吴文荣, 等. 高铁酸盐处理有机废水的研究进展[J]. 化工环保, 2017, 37(1): 19-24. |
LIAN Jiajia, TANG Qingjie, WU Wenrong, et al. Research progresses on treatment of organic wastewater with ferrate[J]. Environmental Protection of Chemical Industry, 2017, 37(1): 19-24. | |
35 | Mika SILLANPÄÄ, NCIBI Mohamed Chaker, MATILAINEN Anu, et al. Removal of natural organic matter in drinking water treatment by coagulation: a comprehensive review[J]. Chemosphere, 2018, 190: 54-71. |
36 | XIE Pengchao, CHEN Yiqun, MA Jun, et al. A mini review of preoxidation to improve coagulation[J]. Chemosphere, 2016, 155: 550-563. |
37 | 李多, 苗时雨, 张怡然, 等. 高锰酸钾预氧化-强化混凝控制饮用水消毒副产物的研究[J]. 水处理技术, 2014, 40(2): 26-30. |
LI Duo, MIAO Shiyu, ZHANG Yiran, et al. Study on the control of drinking water disinfection by-products by potassium permanganate preoxidation-enhanced coagulation process[J]. Technology of Water Treatment, 2014, 40(2): 26-30. | |
38 | QIAN Feng, HE Mengchang, WU Jieyun, et al. Insight into removal of dissolved organic matter in post pharmaceutical wastewater by coagulation-UV/H2O2[J]. Journal of Environmental Sciences, 2019, 76(2): 329-338. |
39 | MOLNAR J, AGBABA J, WATSON M, et al. Groundwater treatment using the fenton process: changes in natural organic matter characteristics and arsenic removal[J]. International Journal of Environmental Research, 2015, 9(2): 467-474. |
40 | KOROTTA-GAMAGE Shashika Madushi, SATHASIVAN Arumugam. A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process[J]. Chemosphere, 2017, 167: 120-138. |
41 | 张淼, 连军锋, 江冲, 等. UV/H2O2-生物活性炭工艺控制消毒副产物进展[J]. 水处理技术, 2020(8): 13-16, 28. |
ZHANG Miao, LIAN Junfeng, JIANG Chong, et al. Control of disinfection by-products by UV/H2O2-biological activated carbon process: a review[J]. Technology of Water Treatment, 2020(8): 13-16, 28. | |
42 | 许亚群, 沈进萍, 高乃云, 等. 臭氧-生物活性炭联用工艺去除腐殖酸的试验[J]. 净水技术, 2015, 34(1): 64-67, 74. |
XU Yaqun, SHEN Jinping, GAO Naiyun, et al. Experiment of combined processes of ozone-biological activated carbon(O3-BAC) for humic acid removal[J]. Water Purification Technology, 2015, 34(1): 64-67, 74. | |
43 | MORTAZAVI S B, ASGARI G, HASHEMIAN S J, et al. Degradation of humic acids through heterogeneous catalytic ozonation with bone charcoal[J]. Reaction Kinetics, Mechanisms and Catalysis, 2010, 100(2): 471-485. |
44 | 秦龙鑫, 潘国元, 张杨, 等. 纳米银在水处理膜中的应用进展[J]. 化工进展, 2016, 35(7): 2114-2120. |
QIN Longxin, PAN Guoyuan, ZHANG Yang, et al. Progress of application of silver nanoparticles in water treatment membranes[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2114-2120. | |
45 | CHENG Xiaoxiang, LIANG Heng, DING An, et al. Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions: membrane fouling mitigation, prediction and mechanism[J]. Journal of Membrane Science, 2016, 505: 15-25. |
46 | 王慧文, 陈卫, 陶辉. 预氧化/超滤组合除锰工艺的膜污染特性[J]. 中国给水排水, 2020, 36(9): 22-26. |
WANG Huiwen, CHEN Wei, TAO Hui. Membrane fouling characteristics of pre-oxidation/uitrafiltration combined process for manganese removal[J]. China Water & Wastewater, 2020, 36(9): 22-26. | |
47 | TIAN Jiayu, WU Cuiwei, YU Huarong, et al. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water[J]. Water Research, 2018, 132: 190-199. |
48 | 刘文琛, 周伟伟, 成小翔, 等. 臭氧组合技术对给水处理低压膜污染控制研究进展[J]. 中国给水排水, 2020, 36(8): 44-49. |
LIU Wenchen, ZHOU Weiwei, CHENG Xiaoxiang, et al. Research progress on fouling control of low-pressure membrane in drinking water treatment by ozonation combination technology[J]. China Water & Wastewater, 2020, 36(8): 44-49. | |
49 | SONG Jia, ZHANG Zhenghua, TANG Shengyin, et al. Does pre-ozonation or in situ ozonation really mitigate the protein-based ceramic membrane fouling in the integrated process of ozonation coupled with ceramic membrane filtration?[J]. Journal of Membrane Science, 2018, 548: 254-262. |
50 | 刘婷, 陈忠林, 沈吉敏, 等. 臭氧预氧化/MBR工艺的膜污染研究[J]. 中国给水排水, 2011, 27(7): 37-41. |
LIU Ting, CHEN Zhonglin, SHEN Jimin, et al. Study on membrane fouling in combined process of preozonation and MBR[J]. China Water & Wastewater, 2011, 27(7): 37-41. |
[1] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[2] | 朱义浩, 赵白航, 王淳, 张雨晴, 杨海山. 改性煤矸石基沸石对水中腐殖酸的吸附性能[J]. 化工进展, 2023, 42(10): 5531-5537. |
[3] | 马爱玲, 黄光许, 耿乾浩, 姚友恒, 李媛媛, 刘迎宾. 硼/氮共掺杂多孔碳纳米片的制备及其电化学性能[J]. 化工进展, 2021, 40(8): 4388-4396. |
[4] | 罗艳红, 岳秀萍, 姜悦如, 赵博玮, 高艳娟, 段燕青. 高级氧化技术降解吲哚的研究进展[J]. 化工进展, 2021, 40(2): 1025-1034. |
[5] | 李章良, 赵晓旭, 黄建辉, 王侯琼, 李萍. 微波诱导Fe3O4/AC催化氧化降解邻苯二甲酸二甲酯[J]. 化工进展, 2021, 40(2): 870-880. |
[6] | 周杰, 宋小三, 王三反. 水处理电絮凝技术的研究进展与挑战[J]. 化工进展, 2020, 39(S2): 329-335. |
[7] | 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3307. |
[8] | 刘志雄, 张佳丽, 洪许言, 田桂英, 汤志豪, 胡明宇. CuO/腐植酸复合材料的制备及其吸附性能[J]. 化工进展, 2018, 37(10): 4060-4067. |
[9] | 刘明, 吴海珍, 胡芸, 韦朝海. 废水中有机污染物催化分解的物理场协同效应[J]. 化工进展, 2016, 35(03): 896-909. |
[10] | 何欢, 隋倩, 吕树光, 赵文涛, 邱兆富. 污水出水有机物对臭氧氧化舒必利的影响[J]. 化工进展, 2015, 34(3): 867-871. |
[11] | 程亮, 徐丽, 雒廷亮, 张保林, 刘国际. 纳米腐殖酸对重金属铬的吸附热力学及动力学[J]. 化工进展, 2015, 34(06): 1792-1798. |
[12] | 张海丰1,2,柴慧建1,赵贵龙1,张兰河1,Song L2. 催化臭氧分离膜制备及去除腐殖酸机理分析[J]. 化工进展, 2014, 33(08): 2199-2205. |
[13] | 叶林静,关卫省,李宇亮. 高级氧化技术降解双酚A的研究进展[J]. 化工进展, 2013, 32(04): 909-918. |
[14] | 郑 可1,周少奇1,2,3,杨梅梅1. H2O2/O3体系处理反渗透浓缩垃圾渗滤液[J]. 化工进展, 2011, 30(11): 2540-. |
[15] | 王俊芳,师 彬,陈建峰,邵 磊. O3/H2O2高级氧化技术在处理难降解有机废水中的应用进展 [J]. 化工进展, 2010, 29(6): 1138-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |