化工进展 ›› 2016, Vol. 35 ›› Issue (03): 896-909.DOI: 10.16085/j.issn.1000-6613.2016.03.038

• 资源与环境化工 • 上一篇    下一篇

废水中有机污染物催化分解的物理场协同效应

刘明1, 吴海珍2, 胡芸1,3, 韦朝海1,3   

  1. 1 华南理工大学环境与能源学院, 广东 广州 510006;
    2 华南理工大学生物科学与工程学院, 广东 广州 510006;
    3 工业聚集区污染控制与生态修复教育部重点实验室, 广东 广州 510006
  • 收稿日期:2015-09-14 修回日期:2015-10-29 出版日期:2016-03-05 发布日期:2016-03-05
  • 通讯作者: 吴海珍,博士,副教授,硕士生导师,主要研究方向为水处理生物资源化利用。E-mail:hzhwu2@scut.edu.cn.
  • 作者简介:刘明(1993-),女,硕士研究生,主要从事水污染治理技术研究。
  • 基金资助:

    国家自然科学基金(21377040,51278199)及中央高校基本科研业务费培育项目(2013ZP0017).

The physical field synergic effects on the catalytic decomposition of organic compounds in wastewater

LIU Ming1, WU Haizhen2, HU Yun1,3, WEI Chaohai1,3   

  1. 1 School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China;
    2 School of Biological Science and Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China;
    3 Key Laboratory of Pollution Control and Ecological Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, Guangdong, China
  • Received:2015-09-14 Revised:2015-10-29 Online:2016-03-05 Published:2016-03-05

摘要: 高级氧化技术(AOPs)的出现推动了废水中难降解污染物催化转化新领域的发展,是废水生物处理技术的延伸,但存在运行能耗高、药剂消耗量大、反应速率缓慢、工程放大应用困难等问题。基于此,本文从物理场的不同物理能量提供方式出发,通过文献统计,回顾并分析了材料性能改善、活性基团增加、自由基产生的激发以及反应速率加快等的现象及其对技术的支持关系,关注药剂的减耗与污染物的降解效率提高之间的作用原理,得出了材料功能化、激发产生自由基活性物种、污染物分子性质、相界面传质能量的协同机制优化是关键的观点,指出物理、化学、介质之间的相互作用存在合理的效应区域。此外,还着重分析了微波、超声波、紫外光协同氧化剂、催化剂以及电化学过程等的能量影响与电子转移带来的分子降解增强机制,不同物理场作用的化学反应差异性取决于介质对能量吸收与电子传导。最后,适当分析了各种方法技术的反应器、工程化以及应用的可能性,初步评价了工业化应用的经济性,存在的困难是放大过程的非线性以及单位质量有机污染物去除比较高的能耗与药耗,但对难降解组分有效。论文对发展高级氧化水处理新型高效技术与装备具有指导价值,并提出了未来技术发展的机理创新、能耗降低、工艺优化的研究方向。

关键词: 有机污染物, 高级氧化技术, 化学反应, 自由基, 物理场, 反应器

Abstract: Advanced oxidation processes (AOPs) applied at a post-treatment stage relative to biological oxidation of industrial wastewaters present a class of promising abatement strategies able to solve the problem of residual refractory,often hazardous organic pollutants. The application of the AOPs is,however,restricted by drawbacks including high energy and agents consumption,low reaction rate,lack of experience in application and,as a result,modest development in full-scale applications concerning the wastewater treatment. Hence,this paper reviews the relationship of technology with improving material properties,increasing active species,stimulating the free radicals and accelerating reaction rate on the foundation of different energy supplying modes of various physical fields,targeting the mechanism of minimization of chemicals usage with degradation efficiency. It comes to the conclusion that the optimization of synergism among functional materials,motivating active species and trans-boundary mass transferring is the most crucial. It points out the reasonable regions for the interaction of physics,chemistry and medium. In addition,the report emphasizes the principles of transforming energy and degradation efficiency of molecules resulted from electron transferring in the latest achievements of oxidants,catalysts,electrochemical processes with applied electromagnetic(UV-light,microwave) and elastic(acoustic,ultrasonic) fields. The difference of chemical reactions under diverse physical fields depends on the absorption of medium for energy and electron transfer. Reactor engineering aspects and,ultimately,the economic efficiency of AOPs are considered. The difficulty is the non-linear extension and the high energy and agents consumption applied in pollutants of unit weight,while it is effective for refractory matters. The review serves a guidance among the state-of-the-art technological solutions for AOPs application to the treatment of wastewaters. Finally,it proposes the direction of future technology with respect to the mechanism innovation,energy reduction and processes optimization.

Key words: organic compounds, advanced oxidation processes, chemical reaction, radicals, physical fields, reactor

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn