化工进展 ›› 2021, Vol. 40 ›› Issue (11): 5861-5874.DOI: 10.16085/j.issn.1000-6613.2020-2311
孙玥1(), 刘玲玲1, 李鑫泉1, 潘建锋2, 刘嘉斌1()
收稿日期:
2020-11-19
修回日期:
2021-01-18
出版日期:
2021-11-05
发布日期:
2021-11-19
通讯作者:
刘嘉斌
作者简介:
孙玥(1997—),女,博士研究生,研究方向为电解铜箔。E-mail:SUN Yue1(), LIU Lingling1, LI Xinquan1, PAN Jianfeng2, LIU Jiabin1()
Received:
2020-11-19
Revised:
2021-01-18
Online:
2021-11-05
Published:
2021-11-19
Contact:
LIU Jiabin
摘要:
电解铜箔作为锂离子电池负极集流体和活性材料的载体,其性能直接影响电池的容量和循环寿命。添加剂的引入是电解铜箔制备工艺中性能调控的重要方式。通过向电解液中引入添加剂可以改变铜沉积的反应电位,影响镀层的微观结构和形貌,有利于提升电解铜箔的某种性能。多种添加剂共同作用时可以提升铜箔的综合性能。本文根据特征基团分类,综述了含硫有机物、含氮有机物、聚醚类化合物、卤素离子、稀有元素这五类常用添加剂对电解铜箔的作用以及不同添加剂间的相互作用和改性优化方式。通过对各添加剂作用机理和效果的分析比较,总结了目前研究中在机理与性能关联性、机理解释矛盾、机理研究的有效手段、添加剂配方生产应用等方面存在的局限性,并指出未来的研究将向着作用机理深入化、添加剂结构配方优化等方向前进。
中图分类号:
孙玥, 刘玲玲, 李鑫泉, 潘建锋, 刘嘉斌. 添加剂对电解铜箔作用机理及作用效果的研究进展[J]. 化工进展, 2021, 40(11): 5861-5874.
SUN Yue, LIU Lingling, LI Xinquan, PAN Jianfeng, LIU Jiabin. Research progress in mechanisms and effects of various additives used for preparing electrolytic copper foils[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5861-5874.
42 | NKUNA E H, POPOOLA A P I. Effect of chloride electrolyte additive on the quality of electrorefined copper cathode[J]. Procedia Manufacturing, 2019, 35: 789-794. |
43 | 朱明华, 李立青. 稀土添加剂在金属电沉积中的应用研究进展[J]. 电镀与涂饰, 2006, 25(6): 46-48, 53. |
ZHU Minghua, LI Liqing. Process of application research of rare earth elements as additives in domestic electrodeposition[J]. Electroplating & Finishing, 2006, 25(6): 46-48, 53. | |
44 | 洪波. 电沉积铜薄膜中织构与内应力的研究[D]. 上海: 上海交通大学, 2008. |
HONG Bo. Study on texture and internal stress of electrodeposited copper film[D]. Shanghai: Shanghai Jiaotong University, 2008. | |
45 | 杨胜奇, 张弘伟, 汪建忠. 稀土添加剂在光亮酸性镀铜中的应用[J]. 材料保护, 2003, 36(4): 67. |
YANG Shengqi, ZHANG Hongwei, WANG Jianzhong. Application of rare element additives in bright copper plating in acidic[J]. Materials Protection, 2003, 36(4): 67. | |
46 | 何田, 易光斌, 蔡芬敏, 等. 添加RE对电解铜箔组织与性能的影响[J]. 特种铸造及有色合金, 2010, 30(7): 658-660, 586. |
HE Tian, YI Guangbin, CAI Fenmin, et al. Effects of RE addition on microstructure and mechanical properties of electrodeposited copper foil[J]. Special Casting & Nonferrous Alloys, 2010, 30(7): 658-660, 586. | |
47 | HEBERT K R. Analysis of current-potential hysteresis during electrodeposition of copper with additives[J]. Journal of the Electrochemical Society, 2001, 148(11): C726. |
48 | HUYNH T M T, WEISS F, HAI N T M, et al. On the role of halides and thiols in additive-assisted copper electroplating[J]. Electrochimica Acta, 2013, 89: 537-548. |
49 | WALKER M L, RICHTER L J, MOFFAT T P. Competitive adsorption of PEG, Cl–, and SPS/MPS on Cu: an in situ ellipsometric study[J]. Journal of the Electrochemical Society, 2006, 153(8): C557. |
1 | 唐致远, 贺艳兵, 刘元刚, 等. 负极集流体铜箔对锂离子电池的影响[J]. 腐蚀科学与防护技术, 2007, 19(4): 265-268. |
TANG Zhiyuan, HE Yanbing, LIU Yuangang, et al. Effects of copper foil as cathode current collector on performance of Li-ion batteries[J]. Corrosion Science and Protection Technology, 2007, 19(4): 265-268. | |
50 | DOW W P, HUANG H S, YEN M Y, et al. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating[J]. Journal of the Electrochemical Society, 2005, 152(6): C425. |
51 | KIM M J, SEO Y, KIM H C, et al. Galvanostatic bottom-up filling of TSV-like trenches: choline-based leveler containing two quaternary ammoniums[J]. Electrochimica Acta, 2015, 163: 174-181. |
52 | BROEKMANN P, FLUEGEL A, EMNET C, et al. Classification of suppressor additives based on synergistic and antagonistic ensemble effects[J]. Electrochimica Acta, 2011, 56(13): 4724-4734. |
53 | LAI Z Q, WANG S X, WANG C, et al. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochimica Acta, 2018, 273: 318-326. |
54 | 李应恩, 樊斌锋, 董景伟, 等. 一种电解铜箔用添加剂及制备双光电池用电解铜箔的生产工艺: CN106350836A[P]. 2017-01-25. |
LI Y E, FAN B F, DONG J W, et al. An additive for electrolysis copper foil and production process for preperring the electrolysis of copper foil for two-optical cells: CN106350836A[P]. 2017-01-25. | |
55 | WOO T G, PARK I S, SEOL K W. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9(3): 341-345. |
56 | 盛大庆, 张在沛, 刘立柱, 等. 一种制备低脆性电解铜箔的复合添加剂: CN110004468A[P]. 2019-07-12. |
SHENG Daqing, ZHANG Zaipei, LIU Lizhu, et al. The invention relates to a compound additive for preparing electrolytic copper foils with low brittle: CN110004468[P]. 2019-07-12. | |
57 | 盛大庆, 张在沛, 刘立柱, 等. 一种用于制备高抗拉强度的电解铜箔的复合添加剂: CN109943868A[P]. 2019-06-28. |
SHENG Daqing, ZHANG Zaipei, LIU Lizhu, et al. The invention relates to a compound additive for preparing electrolytic copper foils with high tensile strength: CN109943868[P]. 2019-06-28. | |
58 | 王俊锋, 刘少华, 廖平元, 等. 一种电解铜箔添加剂: CN105483764A[P]. 2016-04-13. |
WANG Junfeng, LIU Shaohua, LIAO Pingyuan, et al. One kind of additive used for electrolytic copper foils: CN105483764[P]. 2016-04-13. | |
59 | TANG M X, ZHANG S T, QIANG Y J, et al. 4, 6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper[J]. RSC Advances, 2017, 7(64): 40342-40353. |
60 | XU J, CHEN B, LYU J, et al. Aryl modification of diketopyrrolopyrrole-based quaternary ammonium salts and their applications in copper electrodeposition[J]. Dyes and Pigments, 2019, 170: 107559. |
61 | NEDUMTHAKADY N, DEPROSPO B, SHARMA H, et al. In-situ investigation of organic additive interactions in copper electroplating solutions with surface enhanced Raman spectroscopy (SERS)[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). May 28-31, 2019, Las Vegas, NV, USA. IEEE, 2019: 1588-1594. |
62 | JIN Y, SUN M, MU D B, et al. Investigation of PEG adsorption on copper in Cu2+-free solution by SERS and AFM[J]. Electrochimica Acta, 2012, 78: 459-465. |
63 | LIU L L, BU Y Q, SUN Y, et al. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils[J]. Journal of Materials Science & Technology, 2021, 74: 237-245. |
2 | 柏大伟. 锂离子电池中石墨烯基复合负极材料制备与表征[D]. 上海: 上海交通大学, 2010. |
BAI Dawei. Synthesis and characterization of graphene based composites as anode materials for lithium-ion batteries[D]. Shanghai: Shanghai Jiaotong University, 2010. | |
3 | 金荣涛. 电解铜箔生产[M]. 长沙: 中南大学出版社, 2010: 208-209. |
JIN Rongtao. Production of electrolytic copper foil[M]. Changsha: Central South University Press, 2010: 208-209. | |
4 | 蔡元兴, 孙齐磊. 电镀电化学原理[M]. 北京: 化学工业出版社, 2014: 146-148. |
CAI Yuanxing, SUN Qilei. Fundamentals of electroplating electrochemistry[M]. Beijing: Chemical Industry Press, 2014: 146-148. | |
5 | LAI Z Q, WANG S X, WANG C, et al. A comparison of typical additives for copper electroplating based on theoretical computation[J]. Computational Materials Science, 2018, 147: 95-102. |
6 | ZHANG Y M, HANG T, DONG M Y, et al. Effects of 2-mercaptopyridine and Janus Green B as levelers on electrical resistance of electrodeposited copper thin film for interconnects[J]. Thin Solid Films, 2019, 677: 39-44. |
7 | LIN C C, YEN C H, LIN S C, et al. Interactive effects of additives and electrolyte flow rate on the microstructure of electrodeposited copper foils[J]. Journal of the Electrochemical Society, 2017, 164(13): D810-D817. |
8 | JO Y E, YU D Y, CHO S K. Revealing the inhibition effect of quaternary ammonium cations on Cu electrodeposition[J]. Journal of Applied Electrochemistry, 2020, 50(2): 245-253. |
9 | LAI Z Q, WANG C, HUANG Y Z, et al. Temperature-dependent inhibition of PEG in acid copper plating: theoretical analysis and experiment evidence[J]. Materials Today Communications, 2020, 24: 100973. |
10 | MANU R, JAYAKRISHNAN S. Influence of additives and the effect of aging in modifying surface topography of electrodeposited copper[J]. Journal of the Electrochemical Society, 2009, 156(7): D215. |
11 | SCHMIDT R, KNAUP J M, HORSTEN H F. Computational investigation of the adsorption of polyalkylene glycols on copper surfaces for copper electrodeposition[J]. Advanced Theory and Simulations, 2020, 3(1): 1900160. |
12 | IM B, KIM S. Influence of additives on Cu thin films electrodeposited directly on Ti diffusion barrier in Cl--free electrolytes for Cu interconnect[J]. Microelectronic Engineering, 2017, 172: 8-12. |
13 | 易光斌. 电解铜箔组织性能及其翘曲产生机理研究[D]. 南昌: 南昌大学, 2014. |
YI Guangbin. Mechanism on warping and microstructure and mechanical properities of electrolytic copper foils[D]. Nanchang: Nanchang University, 2014. | |
14 | 王海振, 胡旭日. 酸性镀铜添加剂对生产锂离子电池用双面光电解铜箔的影响[J]. 电镀与涂饰, 2019, 38(8): 335-337. |
WANG Haizhen, HU Xuri. Effects of additives for acid copper plating on electrolytic copper foils being bright on both sides for fabrication of lithium-ion batteries[J]. Electroplating & Finishing, 2019, 38(8): 335-337. | |
15 | 方景礼. 电镀添加剂理论与应用[M]. 北京: 国防工业出版社, 2006: 40-44. |
FANG Jingli. Theory and application of electroplating additives[M]. Beijing: National Defense Industry Press, 2006: 40-44. | |
16 | DONEPUDI V S, VENKATACHALAPATHY R, OZEMOYAH P O, et al. Electrodeposition of copper from sulfate electrolytes: effects of thiourea on resistivity and electrodeposition mechanism of copper[J]. Electrochemical and Solid-State Letters, 2001, 4(2): C13. |
17 | DOW W P, CHIU Y D, YEN M Y. Microvia filling by Cu electroplating over a Au seed layer modified by a disulfide[J]. Journal of the Electrochemical Society, 2009, 156(4): 155-167. |
18 | SHEN H Z, KIM H C, SUNG M, et al. Thermodynamic aspects of bis(3‑sulfopropyl) disulfide and 3‑mercapto‑1‑propanesulfonic acid in Cu electrodeposition[J]. Journal of Electroanalytical Chemistry, 2018, 816: 132-137. |
19 | 黄令, 辜敏, 杨防阻, 等. 聚二硫二丙烷磺酸钠对铜电沉积初期行为的影响研究[C]//京津沪渝四直辖市第一届表面工程技术交流会论文集. 重庆: 重庆市电镀行业协会, 2002: 47-49. |
HUANG Ling, GU Min, YANG Fangzu, et al. The influence of bis-(sodium sulfoethyl)-disulfide on the initial behavior of copper electrodeposition[C]// Proceedings of the First Surface Engineering Technology Exchange Meeting of Beijing, Tianjin, Shanghai and Chongqing. Chongqing: Chongqing Electroplating Industry Association, 2002: 47-49. | |
20 | HUNG C C, LEE W H, CHANG S C, et al. Suppression effect of low-concentration bis-(3-sodiumsulfopropyl disulfide) on copper electroplating[J]. Journal of the Electrochemical Society, 2008, 155(2): D133. |
21 | LI Z, TAN B Z, SHI M H, et al. Bis-(sodium sulfoethyl)-disulfide: a promising accelerator for super-conformal copper electrodeposition with wide operating concentration ranges[J]. Journal of the Electrochemical Society, 2020, 167(4): 042508. |
22 | 陈昀钊. 印制电路镀铜添加剂调控铜沉积平整化的研究[D]. 成都: 电子科技大学, 2019. |
CHEN Yunzhao. Investigation of smooth copper deposition with additive regulation for printed circuit[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
23 | LIN C C, HU C C. The ultrahigh-rate growth of nanotwinned copper induced by thiol organic additives[J]. Journal of the Electrochemical Society, 2020, 167(8): 082505. |
24 | LEE A, KIM M J, CHOE S, et al. High strength Cu foil without self-annealing prepared by 2M5S-PEG-SPS[J]. Korean Journal of Chemical Engineering, 2019, 36(6): 981-987. |
25 | CHANG T R, JIN Y, WEN L, et al. Synergistic effects of gelatin and convection on copper foil electrodeposition[J]. Electrochimica Acta, 2016, 211: 245-254. |
26 | MEUDRE C, RICQ L, HIHN J Y, et al. Adsorption of gelatin during electrodeposition of copper and tin-copper alloys from acid sulfate electrolyte[J]. Surface and Coatings Technology, 2014, 252: 93-101. |
27 | KONDO K, OKAMOTO N, SAITO T, et al. Molecular scale growth of electrolytic copper foils[J]. ECS Transactions, 2019, 28(29): 89-93. |
28 | 朱福良, 侯新刚, 丁万武. 明胶分子量对阴极电铜表面质量的影响[J]. 兰州理工大学学报, 2005, 31(6): 25-27. |
ZHU Fuliang, HOU Xingang, DING Wanwu. Effect of molecular weight of gelatine on surface quality of copper electrode position[J]. Journal of Lanzhou University of Technology, 2005, 31(6): 25-27. | |
29 | FABIAN C P, RIDD M J, SHEEHAN M E. Assessment of activated polyacrylamide and guar as organic additives in copper electrodeposition[J]. Hydrometallurgy, 2007, 86(1/2): 44-55. |
30 | 张世超, 叶帆, 蒋涛. 电解铜箔力学性能的主要影响因素[J]. 中国有色金属学报, 2005, 15(1): 167-173. |
ZHANG Shichao, YE Fan, JIANG Tao. Influential factors for main mechanical properties of electrolytic copper foil[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(1): 167-173. | |
31 | 余威懿. 锂离子电池用电解铜箔的制备工艺与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
YU Weiyi. Study on preparation process and properties of electrolytic copper foil for lithium ion batteries[D]. Harbin: Harbin Institute of Technology, 2019. | |
32 | 程曦. 电解工艺对电解铜箔组织与性能影响的研究[D]. 北京: 北京有色金属研究总院, 2019. |
CHENG Xi. Study on the effects of electrolytic process on microstructure and properties of electrolytic copper foils[D]. Beijing: General Research Institute for Nonferrous Metals, 2019. | |
33 | 袁智斌. 锂电池用8微米超薄双面光电解铜箔工艺研究[D]. 南昌: 南昌大学, 2014. |
YUAN Zhibin. Production technology of 8μm ultra-thin electrolytic copper foils with double shining used in lithium battery[D]. Nanchang: Nanchang University, 2014. | |
34 | SONG S J, CHOI S R, KIM J G, et al. Effect of molecular weight of polyethylene glycol on copper electrodeposition in the presence of bis-3-sulfopropyl-disulfide[J]. International Journal of Electrochemical Science, 2016, 11: 10067-10079. |
35 | 张震, 黄金豆. 不同聚合度壬基酚聚氧乙烯醚在酸性光亮镀铜中的应用[J]. 中国有色金属学报, 2017, 27(3): 666-673. |
ZHANG Zhen, HUANG Jindou. Application of NP(EO)n with different polymerization degrees in acid bright copper plating[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(3): 666-673. | |
36 | 蔡芬敏, 彭文屹, 易光斌, 等. 电沉积工艺参数对铜箔性能的影响[J]. 南昌大学学报(工科版), 2011, 33(1): 26-29, 85. |
CAI Fenmin, PENG Wenyi, YI Guangbin, et al. Influence of electro-deposition parameters on mechanical properties of copper foils[J]. Journal of Nanchang University (Engineering & Technology), 2011, 33(1): 26-29, 85. | |
37 | WANG F L, ZHOU K, ZHANG Q L, et al. Effect of molecular weight and concentration of polyethylene glycol on through‑silicon via filling by copper[J]. Microelectronic Engineering, 2019, 215: 111003. |
38 | DIANAT A, YANG H L, BOBETH M, et al. DFT study of interaction of additives with Cu(111) surface relevant to Cu electrodeposition[J]. Journal of Applied Electrochemistry, 2018, 48(2): 211-219. |
39 | SONG J M, ZOU Y S, KUO C C, et al. Orientation dependence of the electrochemical corrosion properties of electrodeposited Cu foils[J]. Corrosion Science, 2013, 74: 223-231. |
40 | SOARES D M, WASLE S, WEIL K G, et al. Copper ion reduction catalyzed by chloride ions[J]. Journal of Electroanalytical Chemistry, 2002, 532(1/2): 353-358. |
41 | CUI W, MOATS M S, LUYIMA A, et al. Examination of copper electrowinning smoothing agents. Part III. Chloride interaction with HydroStar and Cyquest N-900[J]. Minerals Metallurgical Processing, 2016, 33(1): 31-38. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[5] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[6] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[7] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[8] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[9] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[10] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[11] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[12] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[13] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[14] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[15] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |