1 |
叶代启, 陈小方. 我国挥发性有机物减排阶段特征及政策应对[J]. 环境保护, 2017, 45(13): 18-21.
|
|
YE D Q, CHEN X F. Characteristics during different stages of emission reduction of volatile organic compounds and responses policy in China[J]. Environmental Protection, 2017, 45(13): 18-21.
|
2 |
LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B: Environmental, 2010, 100(3/4): 403-412.
|
3 |
HU Z, QIU S, YOU Y, et al. Hydrothermal synthesis of NiCeOxnanosheets and its application to the total oxidation of propane[J]. Applied Catalysis B: Environmental, 2018, 225: 110-120.
|
4 |
HAKIM M, BROZA Y Y, BARASH O, et al. Volatile organic compounds of lung cancer and possible biochemical pathways[J]. Chemical Reviews, 2012, 112(11): 5949-5966.
|
5 |
李长英, 陈明功, 盛楠, 等. 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3): 917-925.
|
|
LI C Y, CHEN M G, SHENG N, et al. The characteristics and development of volatile organic compounds treatment technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 917-925.
|
6 |
HUANG H, XU Y, FENG Q, et al. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2015, 5(5): 2649-2669.
|
7 |
LI W B, WANG J X, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148(1/2): 81-87.
|
8 |
潘红艳, 张煜, 林倩, 等. 催化燃烧VOCs用非贵金属催化剂研究新进展[J]. 化工进展, 2011, 30(8): 95-101, 117.
|
|
PAN H Y, ZHANG Y, LIN Q, et al. Advance in non-noble metal catalysts for catalytic combustion of volatile organic compounds[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 95-101, 117.
|
9 |
邓积光, 何胜男, 谢少华, 等. 用于消除挥发性有机物的有序多孔金属氧化物催化剂的研究进展[J]. 高等学校化学学报, 2014, 35(6): 1119-1129.
|
|
DENG J G, HE S N, XIE S H, et al. Research advancements of ordered porous metal oxide catalysts for the oxidative removal of volatile organic compounds[J]. Chemical Journal of Chinese Universities, 2014, 35(6): 1119-1129.
|
10 |
TIDAHY H L, SIFFERT S, WYRWALSKI F, et al. Catalytic activity of copper and palladium based catalysts for toluene total oxidation[J]. Catalysis Today, 2007, 119(1-4): 317-320.
|
11 |
LUO J, ZHANG Q, GARCIA-MARTINEZ J, et al. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts[J]. Journal of the American Chemical Society, 2008, 130(10): 3198-3207.
|
12 |
ZHANG J, LI Y, WANG L, et al. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catalysis Science & Technology, 2015, 5(4): 2305-2313.
|
13 |
SI W, WANG Y, PENG Y, et al. A high-efficiency gamma-MnO2-like catalyst in toluene combustion[J]. Chemical Communications, 2015, 51(81): 14977-14980.
|
14 |
RONG S, ZHANG P, YANG Y, et al. MnO2 framework for instantaneous mineralization of carcinogenic airborne formaldehyde at room temperature[J]. ACS Catalysis, 2017, 7(2): 1057-1067.
|
15 |
XIE Y, YU Y, GONG X, et al. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane[J]. CrystEngComm, 2015, 17(15): 3005-3014.
|
16 |
SAID M I. Akhtenskite-nsutite phases: polymorphic transformation, thermal behavior and magnetic properties[J]. Journal of Alloys and Compounds, 2020, 819: 152976.
|
17 |
VALIM R B, SANTOS M C, LANZAM R V, et al. Oxygen reduction reaction catalyzed by ɛ-MnO2: influence of the crystalline structure on the reaction mechanism[J]. Electrochimica Acta, 2012, 85: 423-431.
|
18 |
CHABRE Y, PANNETIER J. Structural and electrochemical properties of the proton/γ-MnO2 system[J]. Progress in Solid State Chemistry, 1995, 23(1): 11-30.
|
19 |
XU Y, DHAINAUT J, ROCHARD G, et al. Hierarchical porous ɛ-MnO2 from perovskite precursor: application to the formaldehyde total oxidation[J]. Chemical Engineering Journal, 2020, 388: 124146.
|
20 |
YANG Y, LI Y, ZHANG Q, et al. Novel photoactivation and solar-light-driven thermocatalysis on ɛ-MnO2 nanosheets lead to highly efficient catalytic abatement of ethyl acetate without acetaldehyde as unfavorable by-product[J]. Journal of Materials Chemistry A, 2018, 6(29): 14195-14206.
|
21 |
NGUYEN DINH M T, NGUYEN C C, TRUONG VU T L, et al. Tailoring porous structure, reducibility and Mn4+ fraction of ɛ-MnO2 microcubes for the complete oxidation of toluene[J]. Applied Catalysis A: General, 2020, 595: 117473.
|
22 |
ZHANG S, ZHAO L, WU Y, et al. Controllable synthesis of hierarchical nanoporous ɛ-MnO2 crystals for the highly effective oxidation removal of formaldehyde[J]. CrystEngComm, 2019, 21(25): 3863-3872.
|
23 |
XIE X, LI Y, LIU Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239): 746-749.
|
24 |
CONG Q, CHEN L, WANG X, et al. Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3[J]. Chemical Engineering Journal, 2020, 379: 122302.
|
25 |
KONAR S, KALITA H, PUVVADA N, et al. Shape-dependent catalytic activity of CuO nanostructures[J]. Journal of Catalysis, 2016, 336: 11-22.
|
26 |
WANG Y, XIE S, DENG J, et al. Morphologically controlled synthesis of porous spherical and cubic LaMnO3 with high activity for the catalytic removal of toluene[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17394-17401.
|
27 |
SHI F, WANG F, DAI H, et al. Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene[J]. Applied Catalysis A: General, 2012, 433/434: 206-213.
|
28 |
SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
|
29 |
DU Y, MENG Q, WANG J, et al. Three-dimensional mesoporous manganese oxides and cobalt oxides: high-efficiency catalysts for the removal of toluene and carbon monoxide[J]. Microporous and Mesoporous Materials, 2012, 162: 199-206.
|
30 |
XIE S, DENG J, LIU Y, et al. Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au-Pd alloy nanoparticles for the complete oxidation of toluene[J]. Applied Catalysis A: General, 2015, 507: 82-90.
|
31 |
ZHANG S, WANG H, SI H, et al. Novel core-shell (ɛ-MnO2/CeO2)@CeO2 composite catalyst with a synergistic effect for efficient formaldehyde oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40285-40295.
|
32 |
DONG C, QU Z, JIANG X, et al. Tuning oxygen vacancy concentration of MnO2 through metal doping for improved toluene oxidation[J]. Journal of Hazardous Materials, 2020, 391: 122181.
|
33 |
HUANG N, QU Z, DONG C, et al. Superior performance of alpha@beta-MnO2 for the toluene oxidation: active interface and oxygen vacancy[J]. Applied Catalysis A: General, 2018, 560: 195-205.
|
34 |
LI T Y, CHIANG S J, LIAW B J, et al. Catalytic oxidation of benzene over CuO/Ce1-xMnxO2 catalysts[J]. Applied Catalysis B: Environmental, 2011, 103(1/2): 143-148.
|