1 |
CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259.
|
2 |
CHANG C D, LANG W H, SILVESTRI A J. Synthesis gas conversion to aromatic hydrocarbons[J]. Journal of Catalysis, 1979, 56(2): 268-273.
|
3 |
YAN Q, DOAN P T, TOGHIANI H, et al. Synthesis gas to hydrocarbons over CuO-CoO-Cr2O3/H-ZSM-5 bifunctional catalysts[J]. The Journal of Physical Chemistry C, 2008, 112(31): 11847-11858.
|
4 |
YANG J, PAN X, JIAO F, et al. Direct conversion of syngas to aromatics[J]. Chemical Communications, 2017, 53(81): 11146-11149.
|
5 |
ARSLAN M T, QURESHI B A, GILANI S Z A, et al. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene[J]. ACS Catalysis, 2019, 9(3): 2203-2212.
|
6 |
XU Y, LIU J, WANG J, et al. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts[J]. ACS Catalysis, 2019, 9(6): 5147-5156.
|
7 |
ZHAO B, ZHAI P, WANG P, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem., 2017, 3(2): 323-333.
|
8 |
XU Y, WANG J, MA G, et al. Hollow zeolite nanoparticles combined with Fe3O4@MnO2 tandem catalyst for converting syngas to aromatics-rich gasoline[J]. ACS Applied Nano Materials, 2020, 3(3): 2857-2866.
|
9 |
SUN T, LIN T, AN Y, et al. Syngas conversion to aromatics over the Co2C-based catalyst and HZSM-5 via a tandem system[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4419-4427.
|
10 |
LI M, NAWAZ M A, SONG G, et al. Influential role of elemental migration in a composite iron-zeolite catalyst for the synthesis of aromatics from syngas[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9043-9054.
|
11 |
WANG Y, ZHAN W, CHEN Z, et al. Advanced 3D hollow-out ZnZrO@C combined with hierarchical zeolite for highly active and selective CO hydrogenation to aromatics[J]. ACS Catalysis, 2020, 10(13): 7177-7187.
|
12 |
YANG X, SUN T, MA J, et al. The Influence of intimacy on the ‘iterative reactions’ during OX-ZEO process for aromatic production[J]. Journal of Energy Chemistry, 2019, 35: 60-65.
|
13 |
YANG J, GONG K, MIAO D, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal of Energy Chemistry, 2019, 35: 44-48.
|
14 |
LIU C, LIU S, ZHOU H, et al. Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization[J]. Applied Catalysis A: General, 2019, 585: 117206.
|
15 |
ZHANG P, TAN L, YANG G, et al. One-pass selective conversion of syngas to para-xylene[J]. Chemical Science, 2017, 8(12): 7941-7946.
|
16 |
SONG W, HOU Y, CHEN Z, et al. Process simulation of the syngas-to-aromatics processes: technical economics aspects[J]. Chemical Engineering Science, 2020, 212: 115328.
|
17 |
YANG X, SU X, CHEN D, et al. Direct conversion of syngas to aromatics: a review of recent studies[J]. Chinese Journal of Catalysis, 2020, 41(4): 561-573.
|
18 |
KASIPANDI S, BAE J W. Recent advances in direct synthesis of value-added aromatic chemicals from syngas by cascade reactions over bifunctional catalysts[J]. Advanced Materials, 2019, 31(34): 1803390.
|
19 |
NIMZ M, LIETZ G, VöLTER J, et al. Direct conversion of syngas to aromatics on FePd/SiO2 catalyst[J]. Catalysis Letters, 1988, 1(4): 93-98.
|
20 |
FU Y, NI Y, ZHU W, et al. Enhancing syngas-to-aromatics performance of ZnO&H-ZSM-5 composite catalyst via Mn modulation[J]. Journal of Catalysis, 2020, 383: 97-102.
|
21 |
杨成, 张成华, 许健, 等. 氧化锆催化合成气直接转化制芳烃[J]. 燃料化学学报, 2016, 44(7): 837-844.
|
|
YANG Cheng, ZHANG Chenghua, XU Jian, et al. One-step catalytic conversion of syngas to aromatics over ZrO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 837-844.
|
22 |
LIU J, HE Y, YAN L, et al. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catalysis Science & Technology, 2019, 9(11): 2982-2992.
|
23 |
LIU J, HE Y, YAN L, et al. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel, 2020, 263: 116803.
|
24 |
GILANI S Z A, LU L, ARSLAN M T, et al. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5[J]. Catalysis Science & Technology, 2020, 10: 3366-3375.
|
25 |
YANG T, CHENG L, LI N, et al. Effect of metal active sites on the product distribution over composite catalysts in the direct synthesis of aromatics from syngas[J]. Industrial & Engineering Chemistry Research, 2017, 56(41): 11763-11772.
|
26 |
CHENG K, ZHOU W, KANG J, et al. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem., 2017, 3(2): 334-347.
|
27 |
HUANG Z, WANG S, QIN F, et al. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem, 2018, 10(20): 4519-4524.
|
28 |
ZHOU W, SHI S, WANG Y, et al. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem, 2019, 11(6): 1681-1688.
|
29 |
MIAO D, DING Y, YU T, et al. Selective synthesis of benzene, toluene, and xylenes from syngas[J]. ACS Catalysis, 2020: 7389-7397.
|
30 |
SANTOS V P, POLLEFEYT G, YANCEY D F, et al. Direct conversion of syngas to light olefins (C2-C3) over a tandem catalyst CrZn-SAPO-34: tailoring activity and stability by varying the Cr/Zn ratio and calcination temperature[J]. Journal of Catalysis, 2020, 381, 108-120.
|
31 |
ZHOU C, SHI J, ZHOU W, et al. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catalysis, 2020, 10(1): 302-310.
|
32 |
ZHOU W, ZHOU C, YIN H, et al. Direct conversion of syngas into aromatics over a bifunctional catalyst: inhibiting net CO2 release[J]. Chemical Communications, 2020, 56(39): 5239-5242.
|
33 |
SONG H, LAUDENSCHLEGER D, CAREY J J, et al. Spinel-structured ZnCr2O4 with excess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis[J]. ACS Catalysis, 2017, 7(11): 7610-7622.
|
34 |
HUANG Y, QIAN W, MA H, et al. Impact of Zn/Cr ratio on ZnCrOx-SAPO-34 bifunctional catalyst for direct conversion of syngas to light olefins[J]. International Journal of Chemical and Molecular Engineering, 2018, 12(10): 557-563.
|
35 |
WANG X, CAO R, CHEN K, et al. Synthesis gas conversion to lower olefins over ZnCr-SAPO-34 catalysts: role of ZnO-ZnCr2O4 interface[J]. ChemCatChem, 2020, 12(17): 4387-4395.
|
36 |
KOUVA S, HONKALA K, LEFFERTS L, et al. Review: monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catalysis Science & Technology, 2015, 5(7): 3473-3490.
|
37 |
PIERO G D, TRIFIRO F, VACCARI A. Non-stoicheiometric Zn-Cr spinel as active phase in the catalytic synthesis of methanol[J]. Journal of the Chemical Society, Chemical Communications, 1984(10): 656-658.
|
38 |
TIAN S, DING S, YANG Q, et al. The role of non-stoichiometric spinel for iso-butanol formation from biomass syngas over Zn-Cr based catalysts [J]. RSC Advances, 2017, 7(33): 20135-20145.
|
39 |
BERTOLDI M, FUBINI B, GIAMELLO E, et al. Structure and reactivity of zinc-chromium mixed oxides. Part 1. The role of non-stoichiometry on bulk and surface properties[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988, 84(5): 1405-1421.
|
40 |
ARSLAN M T, ALI B, GILANI S Z A, et al. Selective conversion of syngas into tetramethylbenzene via an aldol-aromatic mechanism[J]. ACS Catalysis, 2020, 10(4): 2477-2488.
|
41 |
TAN L, WANG F, ZHANG P, et al. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins[J]. Chemical Science, 2020, 11(16): 4097-4105.
|
42 |
FUJIMOTO K, KUDO Y, TOMINAGA H O. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid: Ⅱ. Direct synthesis of aromatic hydrocarbons from synthesis gas[J]. Journal of Catalysis, 1984, 87(1): 136-143.
|
43 |
JIAO F, LI J, PAN X, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068.
|
44 |
MA Y, CAI D, LI Y, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected stem analysis study[J]. RSC Advances, 2016, 6(78): 74797-74801.
|
45 |
EL-MALKI E M, SANTEN R A VAN, SACHTLER W M H. Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: identification of acid sites[J]. The Journal of Physical Chemistry B, 1999, 103(22): 4611-4622.
|
46 |
ONO Y, ADACHI H, SENODA Y. Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988, 84(4): 1091-1099.
|
47 |
YU B, DING C, WANG J, et al. Dual effects of zinc species on active sites in bifunctional composite catalysts Zr/H[Zn]ZSM-5 for alkylation of benzene with syngas[J]. The Journal of Physical Chemistry C, 2019, 123(31): 18993-19004.
|
48 |
冯丽梅, 徐亚荣, 张力, 等. 甲醇芳构化反应的热力学研究[J]. 石化技术与应用, 2017, 35(2): 101-105.
|
|
FENG Limei, XU Yarong, ZHANG Li, et al. Study on thermodynamics of methanol to aromatic reaction[J]. Petrochemical Technology & Application, 2017, 35(2): 101-105.
|
49 |
CHEN Zhiyang, NI Youming, ZHI Yuchun, et al. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics[J]. Angewandte Chemie International Edition, 2018, 57(38): 12549-12553.
|