化工进展 ›› 2021, Vol. 40 ›› Issue (1): 173-182.DOI: 10.16085/j.issn.1000-6613.2020-0534
收稿日期:
2020-04-07
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
郭庆杰
作者简介:
谭晓莉(1995—),女,硕士研究生,研究方向为煤炭清洁利用,E-mail:基金资助:
Xiaoli TAN(), Mei AN, Xintong GUO, Qingjie GUO(), Jianping KUANG
Received:
2020-04-07
Online:
2021-01-05
Published:
2021-01-12
Contact:
Qingjie GUO
摘要:
采用机械混合法制备的Fe2O3/膨润土为载氧体,在加压固定床中进行煤焦化学链气化试验和动力学研究,借助拉曼和N2吸附等温线表征手段,分析压力对煤焦反应活性及煤焦碳结构和孔结构的影响,讨论煤焦加压化学链气化反应机理。结果表明:系统总压从0.46MPa增加至0.80MPa时,煤焦化学链气化反应速率从0.0159min-1提高至0.0309min-1;水蒸气分压增加75%,H2/CO摩尔比值增加74%。煤焦加压化学链气化过程可以用随机孔模型(RPM)描述,系统总压增加有利于内部扩散。系统总压增大煤焦的比表面积增加,水蒸气分压增大煤焦的反应活性提高,因而提高了煤焦化学链气化反应速率。
中图分类号:
谭晓莉, 安梅, 郭欣桐, 郭庆杰, 匡建平. 煤焦加压化学链气化反应特性和机理[J]. 化工进展, 2021, 40(1): 173-182.
Xiaoli TAN, Mei AN, Xintong GUO, Qingjie GUO, Jianping KUANG. Reaction characteristics and mechanism of pressurized chemical looping gasification of coal char[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 173-182.
样品 | w1①/% | w2②/% | LHV /MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | St | Oc | ||
NM | 0.73 | 11.85 | 4.27 | 83.88 | 85.15 | 0.98 | 1.13 | 0.89 | 0.01 | 30.14 |
表1 煤焦工业分析及元素分析结果
样品 | w1①/% | w2②/% | LHV /MJ·kg-1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | St | Oc | ||
NM | 0.73 | 11.85 | 4.27 | 83.88 | 85.15 | 0.98 | 1.13 | 0.89 | 0.01 | 30.14 |
序号 | 温度 /℃ | 系统总压 /MPa | 水蒸气分压 /MPa | Ar /L·min-1 | 水蒸气 /L·min-1 |
---|---|---|---|---|---|
1 | 920 | 0.80 | 0.32 | 1.20 | 0.80 |
2 | 920 | 0.80 | 0.40 | 1.00 | 1.00 |
3 | 920 | 0.80 | 0.48 | 0.80 | 1.20 |
4 | 920 | 0.80 | 0.56 | 0.60 | 1.40 |
5 | 920 | 0.46 | 0.32 | 0.35 | 0.80 |
6 | 920 | 0.53 | 0.32 | 0.53 | 0.80 |
7 | 920 | 0.64 | 0.32 | 0.80 | 0.80 |
8 | 900 | 0.80 | 0.40 | 1.00 | 1.00 |
9 | 880 | 0.80 | 0.40 | 1.00 | 1.00 |
10 | 860 | 0.80 | 0.40 | 1.00 | 1.00 |
表2 试验条件
序号 | 温度 /℃ | 系统总压 /MPa | 水蒸气分压 /MPa | Ar /L·min-1 | 水蒸气 /L·min-1 |
---|---|---|---|---|---|
1 | 920 | 0.80 | 0.32 | 1.20 | 0.80 |
2 | 920 | 0.80 | 0.40 | 1.00 | 1.00 |
3 | 920 | 0.80 | 0.48 | 0.80 | 1.20 |
4 | 920 | 0.80 | 0.56 | 0.60 | 1.40 |
5 | 920 | 0.46 | 0.32 | 0.35 | 0.80 |
6 | 920 | 0.53 | 0.32 | 0.53 | 0.80 |
7 | 920 | 0.64 | 0.32 | 0.80 | 0.80 |
8 | 900 | 0.80 | 0.40 | 1.00 | 1.00 |
9 | 880 | 0.80 | 0.40 | 1.00 | 1.00 |
10 | 860 | 0.80 | 0.40 | 1.00 | 1.00 |
系统总压 /MPa | 组分/% | 产率 /% | η /% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.46 | 40.88 | 4.59 | 52.60 | 1.92 | 59.12 | 53.08 |
0.53 | 42.06 | 4.47 | 51.29 | 2.16 | 57.93 | 59.76 |
0.64 | 42.48 | 4.41 | 50.76 | 2.36 | 57.52 | 65.58 |
0.80 | 42.92 | 4.41 | 50.26 | 2.40 | 57.07 | 71.48 |
表3 不同系统总压下78min内总产气中各组分浓度、合成气产率及冷煤气效率
系统总压 /MPa | 组分/% | 产率 /% | η /% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.46 | 40.88 | 4.59 | 52.60 | 1.92 | 59.12 | 53.08 |
0.53 | 42.06 | 4.47 | 51.29 | 2.16 | 57.93 | 59.76 |
0.64 | 42.48 | 4.41 | 50.76 | 2.36 | 57.52 | 65.58 |
0.80 | 42.92 | 4.41 | 50.26 | 2.40 | 57.07 | 71.48 |
水蒸气分压 /MPa | 组合/% | 产率/% | η/% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.32 | 43.36 | 4.33 | 49.97 | 2.35 | 56.64 | 68.48 |
0.40 | 43.89 | 3.75 | 50.93 | 1.43 | 56.10 | 67.48 |
0.48 | 44.24 | 3.10 | 51.66 | 1.00 | 55.76 | 67.35 |
0.56 | 44.25 | 2.61 | 52.30 | 0.84 | 55.74 | 67.34 |
表4 不同水蒸气分压下各气体产物浓度,合成气产率及冷煤气效率
水蒸气分压 /MPa | 组合/% | 产率/% | η/% | |||
---|---|---|---|---|---|---|
CO2 | CO | H2 | CH4 | |||
0.32 | 43.36 | 4.33 | 49.97 | 2.35 | 56.64 | 68.48 |
0.40 | 43.89 | 3.75 | 50.93 | 1.43 | 56.10 | 67.48 |
0.48 | 44.24 | 3.10 | 51.66 | 1.00 | 55.76 | 67.35 |
0.56 | 44.25 | 2.61 | 52.30 | 0.84 | 55.74 | 67.34 |
取样条件 | 压力 /MPa | 比表面积 /m2·g-1 | 孔体积 /mL·g-1 | 反应速率 /min-1 |
---|---|---|---|---|
系统总压 | 0.46 | 347.51 | 0.63 | 0.0159 |
0.53 | 392.09 | 0.57 | 0.0210 | |
0.64 | 493.91 | 0.76 | 0.0239 | |
0.80 | 334.86 | 0.59 | 0.0309 | |
水蒸气分压 | 0.32 | 334.86 | 0.59 | 0.0309 |
0.40 | 420.12 | 0.65 | 0.0331 | |
0.48 | 526.15 | 0.71 | 0.0317 | |
0.56 | 332.26 | 0.51 | 0.0285 |
表5 不同压力下煤焦的孔体积与比表面积
取样条件 | 压力 /MPa | 比表面积 /m2·g-1 | 孔体积 /mL·g-1 | 反应速率 /min-1 |
---|---|---|---|---|
系统总压 | 0.46 | 347.51 | 0.63 | 0.0159 |
0.53 | 392.09 | 0.57 | 0.0210 | |
0.64 | 493.91 | 0.76 | 0.0239 | |
0.80 | 334.86 | 0.59 | 0.0309 | |
水蒸气分压 | 0.32 | 334.86 | 0.59 | 0.0309 |
0.40 | 420.12 | 0.65 | 0.0331 | |
0.48 | 526.15 | 0.71 | 0.0317 | |
0.56 | 332.26 | 0.51 | 0.0285 |
模型 | R2 | |||
---|---|---|---|---|
860℃ | 880℃ | 900℃ | 920℃ | |
VRM | 0.9968 | 0.9977 | 0.9943 | 0.9793 |
SCM | 0.9899 | 0.9936 | 0.9982 | 0.9990 |
RPM | 0.9817 | 0.9891 | 0.9950 | 0.9959 |
表6 系统总压0.80MPa、水蒸气分压0.40MPa、不同温度下模型的拟合相关性系数R2
模型 | R2 | |||
---|---|---|---|---|
860℃ | 880℃ | 900℃ | 920℃ | |
VRM | 0.9968 | 0.9977 | 0.9943 | 0.9793 |
SCM | 0.9899 | 0.9936 | 0.9982 | 0.9990 |
RPM | 0.9817 | 0.9891 | 0.9950 | 0.9959 |
1 | ZENG Jimin, XIAO Rui, ZENG Dewang, et al. High H2/CO ratio syngas production from chemical looping gasification of sawdust in a dualfluidized bed gasifier[J]. Energy & Fuels, 2015, 30(3): 1764-1770. |
2 | WU Hsuan-Chih, Young KU, et al. Chemical looping gasification of charcoal with iron-based oxygen carriers in an annular dual-tube moving bed reactor[J]. Aerosol and Air Quality Research, 2016, 16(4): 1093-1103. |
3 | LIU Guicai, LIAO Yanfen, WU Yuting, et al. Characteristics of microalgae gasification through chemical looping in the presence of steam[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22730-22742. |
4 | 程煜, 刘永卓, 田红景, 等. 铁基复合载氧体煤化学链气化反应特性及机理[J]. 化工学报, 2013, 64(7): 2587-2595. |
CHENG Yu, LIU Yongzhuo, TIAN Hongjing, et al. Chemical-looping gasification reaction characteristics and mechanism of coaland Fe-based composite oxygen carriers[J]. CIESC Journal, 2013, 64(7): 2587-2595. | |
5 | 燕希敏, 苗鹏, 常国璋, 等. Fe/赤泥催化水蒸气气化煤焦的反应性与微结构特性[J]. 化工进展, 2018, 37(5): 1753-1759. |
YAN Ximin, MIAO Peng, CHANG Guozhang, et al. Characteristics of microstructures and reactivities during steam gasification of coal char catalyzed by red mud[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1753-1759. | |
6 | 杨明明, 刘永卓, 胡修德, 等. Fe2O3/ATP载氧体制备及煤化学链燃烧性能研究[J]. 燃料化学学报, 2015, 43(2): 167-176. |
YANG Mingming, LIU Yongzhuo, HU Xiude, et al. Preparation and performance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion[J]. Journal of Fuel Chemistry and Technology, 2015, 43(2): 167-176. | |
7 | 贾伟华, 胡修德, 刘永卓, 等. Ca-Fe/膨润土载氧体煤化学链燃烧反应特性[J]. 燃料化学学报, 2014, 42(9): 1060-1067. |
JIA Weihua, HU Xiude, LIU Yongzhuo, et al. Reactivity of Ca-Fe/膨润土 oxygen carrier in coal chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1060-1067. | |
8 | LINDERHOLM C, CUADRAT A, LYNGFELT A. Chemical-looping combustion of solid fuels in a 10kWth pilot-batch tests with five fuels[C]// GALE J, HENDRIKS C, TURKENBERG W. 10th International Conference on Greenhouse Gas Control Technologies. Amsterdam, Netherlands: Energy Procedia, 2011: 385-392. |
9 | HAUS J, LYU K, HARTGE E, et al. Analysis of a two-stage fuel reactor system for the chemical-looping combustion of lignite and bituminous coal[J]. Energy Technology, 2016, 4(10): 1263-1273. |
10 | WANG Kun, ZHAO Haibo, TIAN Haibo, et al. Chemical-looping with oxygen uncoupling of different coals using copper ore as an oxygen carrier[J]. Energy & Fuels, 2015, 29(10): 6625-6635. |
11 | MEI Daofeng, ZHAO Haibo, MA Zhaojun, et al. Using the sol-gel-derived CuO/CuAl2O4 oxygen carrier in chemical looping with oxygen uncoupling for three typical coals[J]. Energy & Fuels, 2013, 27(5): 2723-2731. |
12 | MENDIARA T, DE DIEGO L F, GARCÍA-LABIANO F, et al. On the use of a highly reactive iron ore in chemical looping combustion of different coals[J]. Fuel, 2014, 126: 239-249. |
13 | NIE Baisheng, LIU Xianfeng, YANG Longlong, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917. |
14 | BAI Boyang, GUO Qingjie, LI Yankun, et al. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy & Fuels, 2018, 32(3): 3356-3367. |
15 | CHANG Guozhang, YAN Ximin, QI Pengyu, et al. Characteristics of reactivity and structures of Palm Kernel Shell (PKS) biochar during CO2/H2O mixture gasification[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2153-2161. |
16 | CHANG Guozhang, XIE Jianjun, HUANG Yanqin, et al. Gasification reactivity and pore structure development: effect of intermittent addition of steam on increasing reactivity of PKS biochar with CO2[J]. Energy & Fuels, 2017, 31(3): 2887-2895. |
17 | ZHANG Zili, YAO J G, BOOT-HANDFORD M E, et al. Pressurised chemical-looping combustion of an iron-based oxygen carrier: reduction kinetic measurements and modelling[J]. Fuel Processing Technology, 2018, 171: 205-214. |
18 | XIA Zhi, WANG Wenju, WANG Guoping. Study of the crystal structure effect and mechanism during chemical looping gasification of coal[J]. Journal of the Energy Institute, 2019, 92(5): 1284-1293. |
19 | GU Zhijun, XIANG Xu, FAN Guoli, et al. Facile synthesis and characterization of cobalt ferrite nanocrystals via a simple reduction-oxidation route[J]. The Journal of Physical Chemistry C, 2008, 112(47): 18459-18466. |
20 | ROBERTS D G, HARRIS D J, WALL T F. On the effects of high pressure and heating rate during coal pyrolysis on char gasification reactivity[J]. Energy & Fuels, 2003, 17(4): 887-895. |
21 | XIAO Rui, SONG Qilei, SONG Qilei, et al. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier[J]. Combustion and Flame, 2010, 157(6): 1140-1153. |
22 | XIAO Rui, CHEN Liangyong, SAHA C, et al. Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit[J]. International Journal of Greenhouse Gas Control, 2012, 10: 363-373. |
23 | SAITO T, NAKAYAMA K, LIN Shiying, et al. Kinetics of char and catalyzed char gasification at high steam partial pressures with or without H2 for chemical looping coal combustion[J]. Journal of Chemical Engineering of Japan, 2017, 50(7): 554-560. |
24 | 阎琪轩, 王建飞, 黄戒介, 等. 加压下氢气对煤焦水蒸气气化反应的影响[J]. 燃料化学学报, 2014, 42(9): 1033-1039. |
YAN Qixuan, WANG Jianfei, HUANG Jiejie, et al. Effect of H2 on coal-char gasification reaction with steam under pressure[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1033-1039. | |
25 | FERRARI C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. |
26 | JAWHARI T, ROID A, CASADO J, et al. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565. |
27 | MATTHEWS M J, PIMENTA M A. Origin of dispersive effects of the Raman D band in carbon materials[J]. Physical Review B, 1999, 59(10): 6585-6588. |
28 | LI Yang, YANG Haiping, HU Junhao, et al. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014, 117: 1174-1180. |
29 | KLOSE W, WOLKI M, et al. On the intrinsic reaction rate of biomass char gasification with carbon dioxide and steam[J]. Fuel, 2005, 84(7/8): 885-892. |
30 | MALEKSHAHIAN M, HILL J M. Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke[J]. Energy & Fuels, 2011, 25(11): 5250-5256. |
31 | GOUWS S M, NEOMAGUS H W J P, ROBERTS D G, et al. The effect of carbon dioxide partial pressure on the gasification rate and pore development of highveld coal chars at elevated pressures[J]. Fuel Processing Technology, 2018, 179: 1-9. |
32 | WU Shiyong, GU Jing, LI Li, et al. The reactivity and kinetics of Yanzhou coal chars from elevated pyrolysis temperatures during gasification in steam at 900-1200℃[J]. Process Safety and Environmental Protection, 2006, 84(6): 420-428. |
[1] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[5] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[6] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[7] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[8] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[9] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[10] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[11] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[12] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[13] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
[14] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[15] | 张成松, 张静, 龚斌, 李明洋, 袁佳新, 李宏业. 自吸射流柔性搅拌桨振动特性[J]. 化工进展, 2023, 42(4): 1728-1738. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |